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Preface

These notes arose from a series of introductory seminars on noncommutative
geometry I gave at the University of Trieste in September 1995 during the X
Workshop on Differential Geometric Methods in Classical Mechanics. It was
Beppe Marmo’s suggestion that I wrote notes for the lectures.

The notes are mainly an introduction to Connes’ noncommutative geome-
try. They could serve as a ‘first aid kit’ before one ventures into the beautiful
but bewildering landscape of Connes’ theory. The main difference from other
available introductions to Connes’ work, is the emphasis on noncommutative
spaces seen as concrete spaces.

Important examples of noncommutative spaces are provided by noncom-
mutative lattices. The latter are the subject of intense work I am doing in
collaboration with A.P. Balachandran, Giuseppe Bimonte, Elisa Ercolessi,
Fedele Lizzi, Gianni Sparano and Paulo Teotonio-Sobrinho. These notes are
also meant to be an introduction to this research. There is still a lot of work
in progress and by no means can these notes be considered as a review of ev-
erything we have achieved so far. Rather, I hope they will show the relevance
and potentiality for physical theories of noncommutative lattices.

Cambridge, October 1997.



Preface to the Online Edition

Since this monograph first appeared in October 1997, there has been a host
of important developments in the subject. My personal taste would select
the following three lines of research but there is much more which I am not
mentioning here for lack of space(-time).
1. Applications of noncommutative geometry to string theories.
The number of papers in the subjects is by now overwhelming. I only mentions
the ones that are at the origin of this activity. In [43] toroidal compactifica-
tions of Matrix theory were extended to compactifications on the noncom-
mutative torus and classified by methods of noncommutative geometry. In
[138] a limit was identified in which the entire string dynamics is described
by a gauge theory on a noncommutative space. The analysis there led to an
unexpected equivalence between ordinary gauge fields and noncommutative
gauge fields which is realized by an explicitly described change of variables.
It is also important to mention the paper [125] where Yang-Mills theory on
a noncommutative R4 provides an understanding of the desingularization of
the moduli space of ‘commutative’ Yang-Mills instantons.
2. Hopf algebras of renormalization.
In [105] the combinatorics of perturbative renormalization of quantum field
theories were related to a Hopf algebra whose antipode gives a conceptual
understanding of the subtraction procedure. In a series of paper [45] this Hopf
algebra has been related to the Hopf algebra introduced via noncommutative
geometry computation of the transverse index theory of foliations [48] and
to a Riemann-Hilbert problem of a suitable group of loops on the dual of the
Hopf algebra. Again, intense activity is registered in this area of research.
3. New examples of noncommutative manifolds.
Quite recently, new examples of noncommutative manifolds, notably noncom-
mutative 4-spheres S4

θ which are deformation of the commutative 4-spheres
S4, have been constructed [46]. These example arise naturally from basic
considerations of noncommutative differential geometry and have non triv-
ial global features. The noncommutative spheres are then endowed with the
structure of a noncommutative spin geometry via a suitable spectral triples
which realizes them as isospectral deformations (all spectral data, including
the classical dimension, four, of the geometry are unchanged). Some general-
izations are to be found in [151, 140, 44, 5]; related work is in [52, 53].



X Preface to the Online Edition

In the present online edition we have corrected misprints, updated the
reference list and clarified several points throughout the text. We strongly feel
that these notes will continue to be a useful introduction to noncommutative
geometry and its use.

Trieste, March 2002.
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1 Introduction

In the last fifteen years, there has been an increasing interest in noncommu-
tative (and/or quantum) geometry both in mathematics and in physics.

In A. Connes’ functional analytic approach [34], noncommutative C∗-
algebras are the ‘dual’ arena for noncommutative topology. The (commuta-
tive) Gel’fand-Naimark theorem (see for instance [76]) states that there is
a complete equivalence between the category of (locally) compact Hausdorff
spaces and (proper and) continuous maps and the category of commutative
(not necessarily) unital1 C∗-algebras and ∗-homomorphisms. Any commuta-
tive C∗-algebra can be realized as the C∗-algebra of complex valued functions
over a (locally) compact Hausdorff space. A noncommutative C∗-algebra will
now be thought of as the algebra of continuous functions on some ‘virtual
noncommutative space’. The attention will be switched from spaces, which
in general do not even exist ‘concretely’, to algebras of functions.

Connes has also developed a new calculus, which replaces the usual differ-
ential calculus. It is based on the notion of a real spectral triple (A,H, D, J)
where A is a noncommutative ∗-algebra (indeed, in general not necessarily
a C∗-algebra), H is a Hilbert space on which A is realized as an algebra
of bounded operators, and D is an operator on H with suitable properties
and which contains (almost all) the ‘geometric’ information. The antilinear
isometry J on H will provide a real structure on the triple. With any closed
n-dimensional Riemannian spin manifold M there is associated a canonical
spectral triple with A = C∞(M), the algebra of complex valued smooth func-
tions on M ; H = L2(M,S), the Hilbert space of square integrable sections of
the irreducible spinor bundle over M ; and D the Dirac operator associated
with the Levi-Civita connection. For this triple Connes’ construction gives
back the usual differential calculus on M . In this case J is the composition
of the charge conjugation operator with usual complex conjugation.

Yang-Mills and gravity theories stem from the notion of connection (gauge
or linear) on vector bundles. The possibility of extending these notions to the
realm of noncommutative geometry relies on another classical duality. The
Serre-Swan theorem [143] states that there is a complete equivalence between
the category of (smooth) vector bundles over a (smooth) compact space and
bundle maps and the category of projective modules of finite type over com-
1 A unital C∗-algebras is a C∗-algebras which has a unit, see Sect. 2.1.

G. Landi: LNPm 51, pp. 1–5, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 1 Introduction

mutative algebras and module morphisms. The space Γ (E) of (smooth) sec-
tions of a vector bundle E over a compact space is a projective module of
finite type over the algebra C(M) of (smooth) functions over M and any
finite projective C(M)-module can be realized as the module of sections of
some bundle over M .

With a noncommutative algebra A as the starting ingredient, the (ana-
logue of) vector bundles will be projective modules of finite type over A.2

One then develops a full theory of connections which culminates in the def-
inition of a Yang-Mills action. Needless to say, starting with the canonical
triple associated with an ordinary manifold one recovers the usual gauge the-
ory. But now, one has a much more general setting. In [47] Connes and Lott
computed the Yang-Mills action for a space M × Y which is the product of
a Riemannian spin manifold M by a ‘discrete’ internal space Y consisting
of two points. The result is a Lagrangian which reproduces the Standard
Model with its Higgs sector with quartic symmetry breaking self-interaction
and the parity violating Yukawa coupling with fermions. A nice feature of
the model is a geometric interpretation of the Higgs field which appears as
the component of the gauge field in the internal direction. Geometrically, the
space M×Y consists of two sheets which are at a distance of the order of the
inverse of the mass scale of the theory. Differentiation on M × Y consists of
differentiation on each copy of M together with a finite difference operation
in the Y direction. A gauge potential A decomposes as a sum of an ordinary
differential part A(1,0) and a finite difference part A(0,1) which gives the Higgs
field.

Quite recently Connes [38] has proposed a pure ‘geometrical’ action
which, for a suitable noncommutative algebra A (noncommutative geom-
etry of the Standard Model), yields the Standard Model Lagrangian cou-
pled with Einstein gravity. The group Aut(A) of automorphisms of the al-
gebra plays the rôle of the diffeomorphism group while the normal subgroup
Inn(A) ⊆ Aut(A) of inner automorphisms gives the gauge transformations.
Internal fluctuations of the geometry, produced by the action of inner auto-
morphisms, give the gauge degrees of freedom.

A theory of linear connections and Riemannian geometry, culminating
in the analogue of the Hilbert-Einstein action in the context of noncommu-
tative geometry has been proposed in [27]. Again, for the canonical triple
one recovers the usual Einstein gravity. When computed for a Connes-Lott
space M × Y as in [27], the action produces a Kaluza-Klein model which
contains the usual integral of the scalar curvature of the metric on M , a
minimal coupling for the scalar field to such a metric, and a kinetic term
for the scalar field. A somewhat different model of geometry on the space
M × Y produces an action which is just the Kaluza-Klein action of unified
2 In fact, the generalization is not so straightforward, see Chapter 4 for a better
discussion.
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gravity-electromagnetism consisting of the usual gravity term, a kinetic term
for a minimally coupled scalar field and an electromagnetic term [110].

Algebraic K-theory of an algebra A, as the study of equivalence classes of
projective modules of finite type over A, provides analogues of topological in-
variants of the ‘corresponding virtual spaces’. On the other hand, cyclic coho-
mology provides analogues of differential geometric invariants. K-theory and
cohomology are connected by the Chern character. This has found a beautiful
application by Bellissard [10] to the quantum Hall effect. He has constructed
a natural cyclic 2-cocycle on the noncommutative algebra of function on the
Brillouin zone. The Hall conductivity is just the pairing between this cyclic
2-cocycle and an idempotent in the algebra: the spectral projection of the
Hamiltonian. A crucial rôle in this analysis is played by the noncommutative
torus [133].

In these notes we give a self-contained introduction to a limited part of
Connes’ noncommutative theory, without even trying to cover all its aspects.
Our main objective is to present some of the physical applications of non-
commutative geometry.

In Chapter 2, we introduce C∗-algebras and the (commutative) Gel’fand-
Naimark theorem. We then move to structure spaces of noncommutative C∗-
algebras. We describe to some extent the space PrimA of an algebra A with
its natural Jacobson topology. Examples of such spaces turn out to be relevant
in an approximation scheme to ‘continuum’ topological spaces by means of
projective systems of lattices with a nontrivial T0 topology [141]. Such lattices
are truly noncommutative lattices since their algebras of continuous functions
are noncommutative C∗-algebras of operator valued functions. Techniques
from noncommutative geometry have been used to construct models of gauge
theory on these noncommutative lattices [7, 8]. Noncommutative lattices are
described at length in Chapter 3.

In Chapter 4 we describe the theory of projective modules and the Serre-
Swan theorem. Then we develop the notion of Hermitian structure, an al-
gebraic counterpart of a metric. We also mention other relevant categories
of (bi)modules such as central and diagonal bimodules. Following this, in
Section 5 we provide a few fundamentals of K-theory. As an example, we
describe at length the K-theory of the algebra of the Penrose tiling of the
plane.

Chapter 6 is devoted to the theory of infinitesimals and the spectral cal-
culus. We first describe the Dixmier trace which plays a fundamental rôle in
the theory of integration. Then the notion of a spectral triple is introduced
with the associated definition of distance and integral on a ‘noncommutative
space’. We work out in detail the example of the canonical triple associated
with any Riemannian spin manifold. Noncommutative forms are then intro-
duced in Chapter 7. Again, we show in detail how to recover the usual exterior
calculus of forms.



4 1 Introduction

In the first part of Chapter 8, we describe abelian gauge theories in or-
der to get some feeling for the structures. We then develop the theory of
connections, compatible connections, and gauge transformations.

In Chapters 9 and 10 we describe field theories on modules. In particular,
in Chapter 9 we show how to construct Yang-Mills and fermionic models.
Gravity models are treated in Chapter 10. In Chapter 11 we describe a simple
quantum mechanical system on a noncommutative lattice, namely the θ-
quantization of a particle on a noncommutative lattice approximating the
circle.

We feel we should warn the interested reader that we shall not give any
detailed account of the construction of the standard model in noncommu-
tative geometry nor of the use of the latter for model building in particle
physics. We shall limit ourselves to a very sketchy overview while referring
to the existing and rather useful literature on the subject.

The appendices contain material related to the ideas developed in the
text.

As alluded to before, the territory of noncommutative and quantum ge-
ometry is so vast and new regions are discovered at such a high speed that
the number of relevant papers is overwhelming. It is impossible to even think
of covering ‘everything’. We just finish this introduction with a partial list
of references for ‘further reading’. The generalization from classical (differ-
ential) geometry to noncommutative (differential) geometry is not unique.
This is a consequence of the existence of several types of noncommutative
algebras. A direct noncommutative generalization of the algebraic approach
of Koszul [102] to differential geometry is given by the so-called ‘derivation-
based calculus’ proposed in [59]. Given a noncommutative algebra A one
takes as the analogue of vector fields the Lie algebra DerA of derivations of
A. Besides the fact that, due to noncommutativity, DerA is a module only
over the center of A, there are several algebras which admit only few deriva-
tions. However, if we think of A as replacing the algebra of smooth functions
on a manifold, the derivation based calculus is ‘natural’ in the sense that it
depends only on A and does not require additional structures (although, in a
sense, one is fixing ‘a priori’ a smooth structure). We refer to [62, 116] for the
details and several applications to Yang-Mills models and gravity theories.
Here we only mention that this approach fits well with quantum mechanics
[60, 61]: since derivations are infinitesimal algebra automorphisms, they are
natural candidates for differential evolution equations and noncommutative
dynamical systems, notably classical and quantum mechanical systems. In
[30, 49, 134, 42] a calculus, with derivations related to a group action in the
framework of C∗-dynamical systems, has been used to construct a noncom-
mutative Yang-Mills theory on noncommutative tori [133]. In [106, 107] (see
also references therein) a calculus, with derivations for commutative algebras,
together with extensions of Lie algebras of derivations, has been used to con-
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struct algebraic gauge theories. Furthermore, algebraic gravity models have
been constructed by generalizing the notion of Einstein algebras [82].

In [155] noncommutative geometry was used to formulate the classical
field theory of strings (see also [88]). For Hopf algebras and quantum groups
and their applications to quantum field theory we refer to [58, 80, 91, 97, 115,
128, 144]. Twisted (or pseudo) groups have been proposed in [157]. For other
interesting quantum spaces such as the quantum plane we refer to [117] and
[154]. Very interesting work on the structure of space-time has been done in
[57, 63]. We also mention the work on infrared and ultraviolet regularizations
in [101].

The reference for Connes’ noncommutative geometry is ‘par excellence’
his book [34]. The paper [152] which has been very helpful has meanwhile
evolved in the (very useful) book [85]. Recent reviews of the state of the art
of several lines of research in noncommutative geometry are in [40, 41].



2 Noncommutative Spaces
and Algebras of Functions

The starting idea of noncommutative geometry is the shift from spaces to
algebras of functions defined on them. In general, one has only the algebra
and there is no analogue of space whatsoever. In this Chapter we shall give
some general facts about algebras of (continuous) functions on (topological)
spaces. In particular we shall try to make some sense of the notion of a
‘noncommutative space’.

2.1 Algebras

Here we present mainly the objects that we shall need later on while referring
to [20, 55, 127] for details. In the sequel, any algebra A will be an algebra
over the field of complex numbers C. This means that A is a vector space
over C so that objects like αa+ βb with a, b ∈ A and α, β ∈ C, make sense.
Also, there is a product A × A → A, A × A � (a, b) �→ ab ∈ A, which is
distributive over addition,

a(b+ c) = ab+ ac , (a+ b)c = ac+ bc , ∀ a, b, c ∈ A . (2.1)

In general, the product is not commutative so that

ab 
= ba . (2.2)

We shall assume that A has a unit, namely an element I such that

aI = Ia , ∀ a ∈ A . (2.3)

On occasion we shall comment on the situations for which this is not the
case. An algebra with a unit will also be called a unital algebra.
The algebra A is called a ∗-algebra if it admits an (antilinear) involution
∗ : A → A with the properties,

a∗∗ = a ,

(ab)∗ = b∗a∗ ,
(αa+ βb)∗ = αa∗ + βb∗ , (2.4)

G. Landi: LNPm 51, pp. 7–20, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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for any a, b ∈ A and α, β ∈ C and bar denotes usual complex conjugation.
A normed algebra A is an algebra with a norm || · || : A → R which has the
properties,

||a|| ≥ 0 , ||a|| = 0 ⇔ a = 0 ,
||αa|| = |α| ||a||,
||a+ b|| ≤ ||a||+ ||b||,
||ab|| ≤ ||a|| ||b||, (2.5)

for any a, b ∈ A and α ∈ C. The third condition is called the triangle inequal-
ity while the last one is called the product inequality. The topology defined
by the norm is called the norm or uniform topology. The corresponding neigh-
borhoods of any a ∈ A are given by

U(a, ε) = {b ∈ A | ||a− b|| < ε} , ε > 0 . (2.6)

A Banach algebra is a normed algebra which is complete in the uniform
topology.
A Banach ∗-algebra is a normed ∗-algebra which is complete and such that

||a∗|| = ||a||, ∀ a ∈ A . (2.7)

A C∗-algebra A is a Banach ∗-algebra whose norm satisfies the additional
identity

||a∗a|| = ||a||2, ∀ a ∈ A . (2.8)

In fact, this property, together with the product inequality yields (2.7) au-
tomatically. Indeed, ||a||2 = ||a∗a|| ≤ ||a∗|| ||a|| from which ||a|| ≤ ||a∗||. By
interchanging a with a∗ one gets ||a∗|| ≤ ||a|| and in turn (2.7).

Example 1. The commutative algebra C(M) of continuous functions on a
compact Hausdorff topological space M , with ∗ denoting complex conjugation
and the norm given by the supremum norm,

||f ||∞ = sup
x∈M

|f(x)| , (2.9)

is an example of commutative C∗-algebra. IfM is not compact but only locally
compact, then one should take the algebra C0(M) of continuous functions
vanishing at infinity; this algebra has no unit. Clearly C(M) = C0(M) if M is
compact. One can prove that C0(M) (and a fortiori C(M) if M is compact)
is complete in the supremum norm.1

1 We recall that a function f : M → C on a locally compact Hausdorff space is said
to vanish at infinity if for every ε > 0 there exists a compact set K ⊂ M such
that |f(x)| < ε for all x /∈ K. As mentioned in App. A.1, the algebra C0(M) is the
closure in the norm (2.9) of the algebra of functions with compact support. The
function f is said to have compact support if the space Kf =: {x ∈M | f(x) �= 0}
is compact [136].
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Example 2. The noncommutative algebra B(H) of bounded linear operators
on an infinite dimensional Hilbert space H with involution ∗ given by the
adjoint and the norm given by the operator norm,

||B|| = sup{||Bχ|| : χ ∈ H, ||χ|| ≤ 1} , (2.10)

gives a noncommutative C∗-algebra.

Example 3. As a particular case of the previous, consider the noncommuta-
tive algebra Mn(C) of n× n matrices T with complex entries, with T ∗ given
by the Hermitian conjugate of T . The norm (2.10) can also be equivalently
written as

||T || = the positive square root of the largest eigenvalue of T∗T . (2.11)

On the algebra Mn(C) one could also define a different norm,

||T ||′ = sup{Tij} , T = (Tij) . (2.12)

One can easily realize that this norm is not a C∗-norm, the property (2.8)
not being fulfilled. It is worth noticing though, that the two norms (2.11) and
(2.12) are equivalent as Banach norms in the sense that they define the same
topology on Mn(C): any ball in the topology of the norm (2.11) is contained
in a ball in the topology of the norm (2.12) and viceversa.

A (proper, norm closed) subspace I of the algebra A is a left ideal (re-
spectively a right ideal) if a ∈ A and b ∈ I imply that ab ∈ I (respectively
ba ∈ I). A two-sided ideal is a subspace which is both a left and a right ideal.
The ideal I (left, right or two-sided) is called maximal if there exists no other
ideal of the same kind in which I is contained. Each ideal is automatically
an algebra. If the algebra A has an involution, any ∗-ideal (namely an ideal
which contains the ∗ of any of its elements) is automatically two-sided. If A
is a Banach ∗-algebra and I is a two-sided ∗-ideal which is also closed (in the
norm topology), then the quotient A/I can be made into a Banach ∗-algebra.
Furthermore, if A is a C∗-algebra, then the quotient A/I is also a C∗-algebra.
The C∗-algebra A is called simple if it has no nontrivial two-sided ideals. A
two-sided ideal I in the C∗-algebra A is called essential in A if any other
non-zero ideal in A has a non-zero intersection with it.

If A is any algebra, the resolvent set r(a) of an element a ∈ A is the
subset of complex numbers given by

r(a) = {λ ∈ C | a− λI is invertible} . (2.13)

For any λ ∈ r(a), the inverse (a − λI)−1 is called the resolvent of a at λ.
The complement of r(a) in C is called the spectrum σ(a) of a. While for a
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general algebra, the spectra of its elements may be rather complicated, for
C∗-algebras they are quite nice. If A is a C∗-algebra, it turns out that the
spectrum of any of its element a is a nonempty compact subset of C. The
spectral radius ρ(a) of a ∈ A is given by

ρ(a) = sup{|λ| , λ ∈ σ(a)} (2.14)

and, A being a C∗-algebra, it turns out that

||a||2 = ρ(a∗a) =: sup{|λ| | a∗a− λ not invertible } , ∀ a ∈ A . (2.15)

A C∗-algebra is really such for a unique norm given by the spectral radius as
in (2.15): the norm is uniquely determined by the algebraic structure.

An element a ∈ A is called self-adjoint if a = a∗. The spectrum of any
such element is real and σ(a) ⊆ [ −||a||, ||a|| ], σ(a2) ⊆ [0, ||a||2]. An element
a ∈ A is called positive if it is self-adjoint and its spectrum is a subset of the
positive half-line. It turns out that the element a is positive if and only if
a = b∗b for some b ∈ A. If a 
= 0 is positive, one also writes a > 0.

A ∗-morphism between two C∗-algebras A and B is any C-linear map
π : A → B which in addition is a homomorphism of algebras, namely, it
satisfies the multiplicative condition,

π(ab) = π(a)π(b) , ∀ a, b ∈ A . (2.16)

and is ∗-preserving,
π(a∗) = π(a)∗ , ∀ a ∈ A . (2.17)

These conditions automatically imply that π is positive, π(a) ≥ 0 if a ≥ 0.
Indeed, if a ≥ 0, then a = b∗b for some b ∈ A; as a consequence, π(a) =
π(b∗b) = π(b)∗π(b) ≥ 0. It also turns out that π is automatically continuous,
norm decreasing,

||π(a)||B ≤ ||a||A , ∀ a ∈ A , (2.18)

and the image π(A) is a C∗-subalgebra of B. A ∗-morphism π which is also
bijective as a map, is called a ∗-isomorphism (the inverse map π−1 is auto-
matically a ∗-morphism).

A representation of a C∗-algebra A is a pair (H, π) where H is a Hilbert
space and π is a ∗-morphism

π : A −→ B(H) , (2.19)

with B(H) the C∗-algebra of bounded operators on H.
The representation (H, π) is called faithful if ker(π) = {0}, so that π is a
∗-isomorphism between A and π(A). One can prove that a representation is
faithful if and only if ||π(a)|| = ||a|| for any a ∈ A or π(a) > 0 for all a > 0.
The representation (H, π) is called irreducible if the only closed subspaces
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of H which are invariant under the action of π(A) are the trivial subspaces
{0} and H. One proves that a representation is irreducible if and only if the
commutant π(A)′ of π(A), i.e. the set of of elements in B(H) which commute
with each element in π(A), consists of multiples of the identity operator.
Two representations (H1, π1) and (H2, π2) are said to be equivalent (or more
precisely, unitary equivalent) if there exists a unitary operator U : H1 → H2,
such that

π1(a) = U∗π2(a)U , ∀ a ∈ A . (2.20)

In App. A.2 we describe the notion of states of a C∗-algebra and the represen-
tations associated with them via the Gel’fand-Naimark-Segal construction.

A subspace I of the C∗-algebra A is called a primitive ideal if it is the ker-
nel of an irreducible representation, namely I = ker(π) for some irreducible
representation (H, π) of A. Notice that I is automatically a two-sided ideal
which is also closed. If A has a faithful irreducible representation on some
Hilbert space so that the set {0} is a primitive ideal, it is called a primitive
C∗-algebra. The set PrimA of all primitive ideals of the C∗-algebra A will
play a crucial rôle in following Chapters.

2.2 Commutative Spaces

The content of the commutative Gel’fand-Naimark theorem is precisely the
fact that given any commutative C∗-algebra C, one can reconstruct a Haus-
dorff2 topological space M such that C is isometrically ∗-isomorphic to the
algebra of (complex valued) continuous functions C(M) [55, 76].

In this Section C denotes a fixed commutative C∗-algebra with unit. Given
such a C, we let Ĉ denote the structure space of C, namely the space of equiv-
alence classes of irreducible representations of C. The trivial representation,
given by C → {0}, is not included in Ĉ. The C∗-algebra C being commuta-
tive, every irreducible representation is one-dimensional. It is then a (non-
zero) ∗-linear functional φ : C → C which is multiplicative, i.e. it satisfies
φ(ab) = φ(a)φ(b) for any a, b ∈ C. It follows that φ(I) = 1, ∀ φ ∈ Ĉ. Any such
multiplicative functional is also called a character of C. Then, the space Ĉ is
also the space of all characters of C.

The space Ĉ is made into a topological space, called the Gel’fand space
of C, by endowing it with the Gel’fand topology, namely the topology of
pointwise convergence on C. A sequence {φλ}λ∈Λ (Λ is any directed set) of
elements of Ĉ converges to φ ∈ Ĉ if and only if for any c ∈ C, the sequence
{φλ(c)}λ∈Λ converges to φ(c) in the topology of C. The algebra C having
a unit implies Ĉ is a compact Hausdorff space. The space Ĉ is only locally
compact if C is without a unit.
2 We recall that a topological space is called Hausdorff if for any two points of
the space there are two open disjoint neighborhoods each containing one of the
points [71].
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Equivalently, Ĉ could be taken to be the space of maximal ideals (auto-
matically two-sided) of C instead of the space of irreducible representations.3

Since the C∗-algebra C is commutative these two constructions agree be-
cause, on one side, kernels of (one-dimensional) irreducible representations
are maximal ideals, and, on the other side, any maximal ideal is the kernel
of an irreducible representation [76]. Indeed, consider φ ∈ Ĉ. Then, since
C = Ker(φ)⊕ C, the ideal Ker(φ) is of codimension one and so it is a max-
imal ideal of C. Conversely, suppose that I is a maximal ideal of C. Then,
the natural representation of C on C/I is irreducible, hence one-dimensional.
It follows that C/I ∼= C, so that the quotient homomorphism C → C/I can
be identified with an element φ ∈ Ĉ. Clearly, I = Ker(φ). When thought of
as a space of maximal ideals, Ĉ is given the Jacobson topology (or hull kernel
topology) producing a space which is homeomorphic to the one constructed
by means of the Gel’fand topology. We shall describe the Jacobson topology
in detail later .

Example 4. Let us suppose that the algebra C is generated by N commuting
self-adjoint elements x1, . . . , xN . Then the structure space Ĉ can be identified
with a compact subset of RN by the map [35],

φ ∈ Ĉ −→ (φ(x1), . . . , φ(xN )) ∈ RN , (2.21)

and the range of this map is the joint spectrum of x1, . . . , xN , namely the set
of all N -tuples of eigenvalues corresponding to common eigenvectors.

In general, if c ∈ C, itsGel’fand transform ĉ is the complex-valued function
on Ĉ, ĉ : Ĉ → C, given by

ĉ(φ) = φ(c) , ∀ φ ∈ Ĉ . (2.22)

It is clear that ĉ is continuous for each c. We thus get the interpretation of
elements in C as C-valued continuous functions on Ĉ. The Gel’fand-Naimark
theorem states that all continuous functions on Ĉ are of the form (2.22) for
some c ∈ C [55, 76].

Proposition 1. Let C be a commutative C∗-algebra. Then, the Gel’fand
transform c → ĉ is an isometric ∗-isomorphism of C onto C(Ĉ); isometric
meaning that

||ĉ||∞ = ||c|| , ∀ c ∈ C , (2.23)

with || · ||∞ the supremum norm on C(Ĉ) as in (2.9).
3 If there is no unit, one needs to consider ideals which are regular (also called

modular) as well. An ideal I of a general algebra A being called regular if there
is a unit in A modulo I, namely an element u ∈ A such that a−au and a−ua are
in I for all a ∈ A [76]. If A has a unit, then any ideal is automatically regular.
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Suppose now that M is a (locally) compact topological space. As we have
seen in Example 1 of Sect. 2.1, we have a natural C∗-algebra C(M). It is
natural to ask what is the relationship between the Gel’fand space Ĉ(M) and
M itself. It turns out that these two spaces can be identified both setwise
and topologically. First of all, each m ∈ M gives a complex homomorphism
φm ∈ Ĉ(M) through the evaluation map,

φm : C(M) → C , φm(f) = f(m) . (2.24)

Let Im denote the kernel of φm, that is the maximal ideal of C(M) consisting
of all functions vanishing at m. We have the following [55, 76],

Proposition 2. The map φ of (2.24) is a homeomorphism of M onto Ĉ(M).
Equivalently, every maximal ideal of C(M) is of the form Im for somem ∈M .

The previous two theorems set up a one-to-one correspondence between the
∗-isomorphism classes of commutative C∗-algebras and the homeomorphism
classes of locally compact Hausdorff spaces. Commutative C∗-algebras with
unit correspond to compact Hausdorff spaces. In fact, this correspondence is a
complete duality between the category of (locally) compact Hausdorff spaces
and (proper4 and) continuous maps and the category of commutative (not
necessarily) unital C∗-algebras and ∗-homomorphisms. Any commutative C∗-
algebra can be realized as the C∗-algebra of complex valued functions over a
(locally) compact Hausdorff space. Finally, we mention that the space M is
metrizable, its topology comes from a metric, if and only if the C∗-algebra
is norm separable, meaning that it admits a dense (in the norm) countable
subset. Also it is connected if the corresponding algebra has no projectors,
i.e. self-adjoint, p∗ = p, idempotents, p2 = p; this is a consequence of the fact
that projectors in a commutative C∗-algebra C correspond to open-closed
subsets in its structure space Ĉ [33].

2.3 Noncommutative Spaces

The scheme described in the previous Section cannot be directly generalized
to a noncommutative C∗-algebra. To show some of the features of the general
case, let us consider the simple example (taken from [35]) of the algebra

M2(C) = {
[
a11 a12
a21 a22

]
, aij ∈ C} . (2.25)

The commutative subalgebra of diagonal matrices
4 We recall that a continuous map between two locally compact Hausdorff spaces
f : X → Y is called proper if f−1(K) is a compact subset of X when K is a
compact subset of Y .
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C = {
[
λ 0
0 µ

]
, λ, µ ∈ C} , (2.26)

has a structure space consisting of two points given by the characters

φ1(
[
λ 0
0 µ

]
) = λ , φ2(

[
λ 0
0 µ

]
) = µ . (2.27)

These two characters extend as pure states (see App. A.2) to the full algebra
M2(C) as follows,

φ̃i : M2(C) −→ C , i = 1, 2 ,

φ̃1(
[
a11 a12
a21 a22

]
) = a11 , φ̃2(

[
a11 a12
a21 a22

]
) = a22 . (2.28)

But now, noncommutativity implies the equivalence of the irreducible repre-
sentations of M2(C) associated, via the Gel’fand-Naimark-Segal construction,
with the pure states φ̃1 and φ̃2. In fact, up to equivalence, the algebra M2(C)
has only one irreducible representation, i.e. the defining two dimensional one.5

We show this in App. A.2.

For a noncommutative C∗-algebra, there is more than one candidate for
the analogue of the topological spaceM . We shall consider the following ones:

1. The structure space of A or space of all unitary equivalence classes of
irreducible ∗-representations. Such a space is denoted by Â.

2. The primitive spectrum of A or the space of kernels of irreducible ∗-
representations. Such a space is denoted by PrimA. Any element of
PrimA is automatically a two-sided ∗-ideal of A.

While for a commutative C∗-algebra these two spaces agree, this is no longer
true for a general C∗-algebraA, not even setwise. For instance, Âmay be very
complicated while PrimA consists of a single point. One can define natural
topologies on Â and PrimA. We shall describe them in the next Section.

2.3.1 The Jacobson (or Hull-Kernel) Topology

The topology on PrimA is given by means of a closure operation. Given
any subset W of PrimA, the closure W of W is by definition the set of all
elements in PrimA containing the intersection

⋂
W of the elements of W ,

namely
W =: {I ∈ PrimA :

⋂
W ⊆ I} . (2.29)

For any C∗-algebra A we have the following,

5 As we mention in App. A.4, M2(C) is strongly Morita equivalent to C. In that
Appendix we shall also see that two strongly Morita equivalent C∗-algebras have
the same space of classes of irreducible representations.
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Proposition 3. The closure operation (2.29) satisfies the Kuratowski axioms

K1 ∅ = ∅ ;
K2 W ⊆W , ∀ W ∈ PrimA ;
K3 W = W , ∀ W ∈ PrimA ;
K4 W1 ∪W2 = W 1 ∪W 2 , ∀ W1,W2 ∈ PrimA .

Proof. Property K1 is immediate since
⋂ ∅ ‘does not exist’. By construction,

alsoK2 is immediate. Furthermore,
⋂
W =

⋂
W from whichW = W , namely

K3. To prove K4, first observe that

V ⊆W =⇒ (
⋂
V ) ⊇ (

⋂
W ) =⇒ V ⊆W . (2.30)

From this it follows that W i ⊆W1
⋃
W2, i = 1, 2 and in turn

W 1 ∪W 2 ⊆W1 ∪W2 . (2.31)

To obtain the opposite inclusion, consider a primitive ideal I not belonging
to W 1

⋃
W 2. This means that

⋂
W1 
⊂ I and

⋂
W2 
⊂ I. Thus, if π is a

representation of A with I = Ker(π), there are elements a ∈ ⋂W1 and b ∈⋂
W2 such that π(a) 
= 0 and π(b) 
= 0. If ξ is any vector in the representation

space Hπ such that π(a)ξ 
= 0 then, π being irreducible, π(a)ξ is a cyclic
vector for π (see App. A.2). This, together with the fact that π(b) 
= 0,
ensures that there is an element c ∈ A such that π(b)(π(c)π(a))ξ 
= 0 which
implies that bca 
= Ker(π) = I. But bca ∈ (

⋂
W1) ∩ (

⋂
W2) =

⋂
(W1 ∪W2).

Therefore
⋂

(W1 ∪W2) 
⊂ I; whence I 
∈ W1 ∪W2. What we have proven is
that I 
∈ W 1

⋃
W 2 ⇒ I 
∈ W 1

⋃
W 2, which gives the inclusion opposite to

(2.31). So K4 follows.

It also follows that the closure operation (2.29) defines a topology on PrimA,
(see App. A.1) which is called Jacobson topology or hull-kernel topology. The
reason for the second name is that

⋂
W is also called the kernel of W and

then W is the hull of
⋂
W [76, 55].

To illustrate this topology, we shall give a simple example. Consider the
algebra C(I) of complex-valued continuous functions on an interval I. As we
have seen, its structure space Ĉ(I) can be identified with the interval I. For
any a, b ∈ I, let W be the subset of Ĉ(I) given by

W = {Ix , x ∈ ]a, b[ } , (2.32)

where Ix is the maximal ideal of C(I) consisting of all functions vanishing at
the point x,

Ix = {f ∈ C(I) | f(x) = 0} . (2.33)

The ideal Ix is the kernel of the evaluation homomorphism as in (2.24). Then⋂
W =

⋂
x∈]a,b[

Ix = {f ∈ C(I) | f(x) = 0 , ∀ x ∈ ]a, b[ } , (2.34)
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and, the functions being continuous,

W = {I ∈ Ĉ |
⋂
W ⊂ I}

= W
⋃

{Ia, Ib}
= {Ix, x ∈ [a, b] } , (2.35)

which can be identified with the closure of the interval ]a, b[.

In general, the space PrimA has a few properties which are easy to prove.
So we simply state them here as propositions [55].

Proposition 4. Let W be a subset of PrimA. Then W is closed if and only
if W is exactly the set of primitive ideals containing some subset of A.
Proof. If W is closed then W = W and by the very definition (2.29), W is the
set of primitive ideals containing

⋂
W . Conversely, let V ⊆ A. If W is the set

of primitive ideals of A containing V , then V ⊆ ⋂
W from which W ⊂ W ,

and, in turn, W = W .

Proposition 5. There is a bijective correspondence between closed subsetsW
of PrimA and (norm-closed two sided) ideals JW of A. The correspondence
is given by

W = {I ∈ PrimA | JW ⊆ I} . (2.36)

Proof. If W is closed then W = W and by the definition (2.29), JW is just
the ideal

⋂
W . Conversely, from the previous proposition, W defined as in

(2.36) is closed.

Proposition 6. Let W be a subset of PrimA. Then W is closed if and only
if I ∈W and I ⊆ J ⇒ J ∈W .

Proof. If W is closed then W = W and by the definition (2.29), I ∈ W and
I ⊆ J implies that J ∈ W . The converse implication is also evident by the
previous Proposition.

Proposition 7. The space PrimA is a T0-space.6

Proof. Suppose I1 and I2 are two distinct points of PrimA so that, say,
I1 
⊂ I2. Then the set W of those I ∈ PrimA which contain I1 is a closed
subset (by 4), such that I1 ∈ W and I2 
∈ W . The complement W c of W is
an open set containing I2 and not I1.
6 We recall that a topological space is called T0 if for any two distinct points of the
space there is an open neighborhood of one of the points which does not contain
the other [71].
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Proposition 8. Let I ∈ PrimA. Then the point {I} is closed in PrimA if
and only if I is maximal among primitive ideals.
Proof. Indeed, the closure of {I} is just the set of primitive ideals of A
containing I.

In general, PrimA is not a T1-space7 and will be so if and only if all
primitive ideals in A are also maximal. The notion of primitive ideal is more
general than the one of maximal ideal. For a commutative C∗-algebra an
ideal is primitive if and only if it is maximal. For a general A (with unit),
while a maximal ideal is primitive, the converse need not be true [55].

Let us now consider the structure space Â. Now, there is a canonical
surjection

Â −→ PrimA , π �→ ker(π) . (2.37)

The inverse image under this map, of the Jacobson topology on PrimA is a
topology for Â. In this topology, a subset S ⊂ Â is open if and only if it is
of the form {π ∈ Â | ker(π) ∈ W} for some subset W ⊂ PrimA which is
open in the (Jacobson) topology of PrimA. The resulting topological space
is still called the structure space. There is another natural topology on the
space Â called the regional topology. For a C∗-algebra A, the regional and
the pullback of the Jacobson topology on Â coincide, [76, page 563].

Proposition 9. Let A be a C∗-algebra. The following conditions are equiva-
lent

(i) Â is a T0 space;
(ii) Two irreducible representations of Â with the same kernel are equivalent;
(iii) The canonical map Â → PrimA is a homeomorphism.

Proof. By construction, a subset S ∈ Â will be closed if and only if it is of the
form {π ∈ Â : ker(π) ∈W} for some W closed in PrimA. As a consequence,
given any two (classes of) representations π1, π2 ∈ Â, the representation π1
will be in the closure of π2 if and only if ker(π1) is in the closure of ker(π2),
or, by Prop.4 if and only if ker(π2) ⊂ ker(π1). In turn, π1 and π2 agree in
the closure of the other if and only if ker(π2) = ker(π1). Therefore, π1 and
π2 will not be distinguished by the topology of Â if and only if they have the
same kernel. On the other side, if Â is T0 one is able to distinguish points. It
follows that (i) implies that two representations with the same kernel must
be equivalent so as to correspond to the same point of Â, namely (ii). The
other implications are obvious.
7 We recall that a topological space is called T1 if any point of the space is closed
[71].
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We recall that a (not necessarily Hausdorff) topological space S is called
locally compact if any point of S has at least one compact neighborhood.
A compact space is automatically locally compact. If S is a locally compact
space which is also Hausdorff, then the family of closed compact neighbor-
hoods of any point is a base for its neighborhood system. With respect to
compactness, the structure space of a noncommutative C∗-algebra behaves
as in the commutative situation [76, page 576]; we have

Proposition 10. If A is a C∗-algebra, then Â is locally compact. Likewise,
PrimA is locally compact. If A has a unit, then both Â and PrimA are
compact.

Notice that in general, Â being compact does not imply that A has a unit. For
instance, the algebra K(H) of compact operators on an infinite dimensional
Hilbert space H has no unit but its structure space has only one point (see
the next Section).

2.4 Compact Operators

We recall [135] that an operator on the Hilbert space H is said to be of finite
rank if the orthogonal complement of its null space is finite dimensional.
Essentially, we may think of such an operator as a finite dimensional matrix
even if the Hilbert space is infinite dimensional.

Definition 1. An operator T on H is said to be compact if it can be approx-
imated in norm by finite rank operators.

An equivalent way to characterize a compact operator T is by stating that

∀ ε > 0 , ∃ a finite dimensional subspace E ⊂ H | ||T |E⊥ || < ε . (2.38)

Here the orthogonal subspace E⊥ is of finite codimension in H. The set K(H)
of all compact operators T on the Hilbert space H is the largest two-sided
ideal in the C∗-algebra B(H) of all bounded operators. In fact, it is the only
norm closed and two-sided ideal when H is separable; and it is essential [76].
It is also a C∗-algebra without a unit, since the operator I on an infinite
dimensional Hilbert space is not compact. The defining representation of
K(H) by itself is irreducible [76] and it is the only irreducible representation
of K(H) up to equivalence.8

There is a special class of C∗-algebras which have been used in a scheme of
approximation by means of topological lattices [7, 8, 12]; they are postliminal
8 If H is finite dimensional, H = C

n say, then B(Cn) = K(Cn) = Mn(C), the
algebra of n × n matrices with complex entries. Such an algebra has only one
irreducible representation (as an algebra), namely the defining one.
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algebras. For these algebras, a relevant rôle is again played by the compact
operators. Before we give the appropriate definitions, we state another result
which shows the relevance of compact operators in the analysis of irreducibil-
ity of representations of a general C∗-algebra and which is a consequence of
the fact that K(H) is the largest two-sided ideal in B(H) [124].

Proposition 11. Let A be a C∗-algebra acting irreducibly on a Hilbert space
H and having non-zero intersection with K(H). Then K(H) ⊆ A.

Definition 2. A C∗-algebra A is said to be liminal if for every irreducible
representation (H, π) of A one has that π(A) = K(H) (or equivalently, from
Prop. 11, π(A) ⊂ K(H)).

So, the algebraA is liminal if it is mapped to the algebra of compact operators
under any irreducible representation. Furthermore, if A is a liminal algebra,
then one can prove that each primitive ideal of A is automatically a maximal
closed two-sided ideal of A. As a consequence, all points of PrimA are closed
and PrimA is a T1 space. In particular, every commutative C∗-algebra is
liminal [124, 55].

Definition 3. A C∗-algebra A is said to be postliminal if for every irreducible
representation (H, π) of A one has that K(H) ⊆ π(A) (or equivalently, from
Prop. 11, π(A) ∩ K(H) 
= 0).

Every liminal C∗-algebra is postliminal but the converse is not true. Postlim-
inal algebras have the remarkable property that their irreducible represen-
tations are completely characterized by the kernels: if (H1, π1) and (H2, π2)
are two irreducible representations with the same kernel, then π1 and π2
are equivalent [124, 55]. From Prop. (9), the spaces Â and PrimA are then
homeomorphic.

2.5 Real Algebras and Jordan Algebras

From what we have said up to now, it should be clear that a (complex)
C∗-algebra replaces the algebra of complex valued continuous functions on
a topological space. It is natural then, to look for suitable replacements of
the algebra of real valued functions. Well, it has been suggested (see for
instance [61]) that rather than an associative real algebra, in the spirit of
quantum mechanics, one should consider the Jordan algebra Asa of self-
adjoint elements of a complex C∗-algebra A,

Asa =: {a ∈ A | a∗ = a} . (2.39)

Now, Asa has a natural product
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a ◦ b =:
1
2

(ab+ ba) , ∀ a, b ∈ Asa , (2.40)

which is commutative but non associative, as can be easily checked. Instead,
commutativity gives a weak form of associativity which goes under the name
of the Jordan algebra identity,

a2 ◦ (a ◦ b) = a ◦ (a2 ◦ b) , ∀ a, b ∈ Asa . (2.41)

The product (2.40) is the only one which preserves Asa.
We refer to [149] for an introduction to Jordan algebras.



3 Projective Systems
of Noncommutative Lattices

The idea of a ‘discrete substratum’ underpinning the ‘continuum’ is somewhat
spread among physicists. With particular emphasis this idea has been pushed
by R. Sorkin who, in [141], assumes that the substratum be a finitary (see
later) topological space which maintains some of the topological information
of the continuum. It turns out that the finitary topology can be equivalently
described in terms of a partial order. This partial order has been alternatively
interpreted as determining the causal structure in the approach to quantum
gravity of [15]. Recently, finitary topological spaces have been interpreted
as noncommutative lattices and noncommutative geometry has been used to
construct quantum mechanical and field theoretical models, notably lattice
field theory models, on them [7, 8].

Given a suitable covering of a topological spaceM , by identifying any two
points of M which cannot be ‘distinguished’ by the sets in the covering, one
constructs a lattice with a finite (or in general a countable) number of points.
Such a lattice, with the quotient topology, becomes a T0-space which turns
out to be the structure space (or equivalently, the space of primitive ideals) of
a postliminar approximately finite dimensional (AF) algebra. Therefore the
lattice is truly a noncommutative space. In this Chapter we shall describe
noncommutative lattices in some detail while in Chap. 11 we shall illustrate
some of their applications in physics.

3.1 The Topological Approximation

The approximation scheme we are going to describe has really a deep physical
flavour. To get a taste of the general situation, let us consider the following
simple example. Let us suppose we are about to measure the position of a par-
ticle which moves on a circle, of radius one say, S1 = {0 ≤ ϕ ≤ 2π, mod 2π}.
Our ‘detectors’ will be taken to be (possibly overlapping) open subsets of S1

with some mechanism which switches on the detector when the particle is in
the corresponding open set. The number of detectors must be clearly limited
and we take them to consist of the following three open subsets whose union
covers S1,

G. Landi: LNPm 51, pp. 21–58, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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U1 = {− 1
3π < ϕ <

2
3π},

U2 = { 1
3π < ϕ <

4
3π},

U3 = {π < ϕ < 2π}.

(3.1)

Now, if two detectors, U1 and U2 say, are on, we will know that the particle is
in the intersection U1 ∩U2 although we will be unable to distinguish any two
points in this intersection. The same will be true for the other two intersec-
tions. Furthermore, if only one detector, U1 say, is on, we can infer the pres-
ence of the particle in the closed subset of S1 given by U1\{U1∩U2

⋃
U1∩U3}

but again we will be unable to distinguish any two points in this closed set.
The same will be true for the other two closed sets of similar type. Summing
up, if we have only the three detectors (3.1), we are forced to identify the
points which cannot be distinguished and S1 will be represented by a col-
lection of six points P = {α, β, γ, a, b, c} which correspond to the following
identifications

U1 ∩ U3 = { 5
3π < ϕ < 2π} → α,

U1 ∩ U2 = { 1
3π < ϕ <

2
3π} → β,

U2 ∩ U3 = {π < ϕ < 4
3π} → γ,

U1 \ {U1 ∩ U2
⋃
U1 ∩ U3} = {0 ≤ ϕ ≤ 1

3π} → a,

U2 \ {U2 ∩ U1
⋃
U2 ∩ U3} = { 2

3π ≤ ϕ ≤ π} → b,

U3 \ {U3 ∩ U2
⋃
U3 ∩ U1} = { 4

3π ≤ ϕ ≤ 5
3π} → c.

(3.2)

We can push things a bit further and keep track of the kind of set from which
a point in P comes by declaring the point to be open (respectively closed)
if the subset of S1 from which it comes is open (respectively closed). This
is equivalently achieved by endowing the space P with a topology a basis of
which is given by the following open (by definition) sets,

{α}, {β}, {γ},
{α, a, β}, {β, b, γ}, {α, c, γ} . (3.3)

The corresponding topology on the quotient space P is nothing but the quo-
tient topology of the one on S1 generated by the three open sets U1, U2, U3,
by the quotient map (3.2).

In general, let us suppose that we have a topological space M together
with an open covering U = {Uλ} which is also a topology for M , so that U
is closed under arbitrary unions and finite intersections (see App. A.1). We
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define an equivalence relation among points of M by declaring that any two
points x, y ∈ M are equivalent if every open set Uλ containing either x or y
contains the other too,

x ∼ y if and only if x ∈ Uλ ⇔ y ∈ Uλ , ∀ Uλ ∈ U . (3.4)

Thus, two points of M are identified if they cannot be distinguished by any
‘detector’ in the collection U .

The space PU (M) =: M/∼ of equivalence classes is then given the quotient
topology. If π : M → PU (M) is the natural projection, a set U ⊂ PU (M)
is declared to be open if and only if π−1(U) is open in the topology of M
given by U . The quotient topology is the finest one making π continuous.
When M is compact, the covering U can be taken to be finite so that PU (M)
will consist of a finite number of points. If M is only locally compact the
covering can be taken to be locally finite and each point has a neighborhood
intersected by only finitely many Uλ’ s. Then the space PU (M) will consist
of a countable number of points; in the terminology of [141] PU (M) would be
a finitary approximation of M . If PU (M) has N points we shall also denote
it by PN (M).1 For example, the finite space given by (3.2) is P6(S1).

In general, PU (M) is not Hausdorff: from (3.3) it is evident that in P6(S1),
for instance, we cannot isolate the point a from α by using open sets. It is
not even a T1-space; again, in P6(S1) only the points a, b and c are closed
while the points α, β and γ are open. In general there will be points which
are neither closed nor open. It can be shown, however, that PU (M) is always
a T0-space, being, indeed, the T0-quotient of M with respect to the topology
U [141].

3.2 Order and Topology

What we shall show next is how the topology of any finitary T0 topological
space P can be given equivalently by means of a partial order which makes P
a partially ordered set (or poset for short) [141]. Consider first the case when
P is finite. Then, the collection τ of open sets (the topology on P ) will be
closed under arbitrary unions and arbitrary intersections. As a consequence,
for any point x ∈ P , the intersection of all open sets containing it,

Λ(x) =:
⋂
{U ∈ τ | x ∈ U} , (3.5)

will be the smallest open neighborhood containing the point. A relation % is
then defined on P by

x % y ⇔ Λ(x) ⊆ Λ(y) , ∀ x, y ∈ P . (3.6)
1 In fact, this notation is incomplete since it does not keep track of the finite topol-
ogy given on the set of N points. However, at least for the examples considered
in these notes, the topology will always be given explicitly.
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Now, x ∈ Λ(x) always, so that the previous definition is equivalent to

x % y ⇔ x ∈ Λ(y) , (3.7)

which can also be stated as saying that

x % y ⇔ every open set containing y also contains x , (3.8)

or, in turn, that
x % y ⇔ y ∈ {x} , (3.9)

with {x} the closure of the one point set {x}.2
From (3.6) it is clear that the relation % is reflexive and transitive,

x % x,
x % y , y % z ⇒ x % z . (3.10)

Furthermore, since P is a T0-space, for any two distinct points x, y ∈ P , there
is at least one open set containing x, say, and not y. This, together with (3.8),
implies that the relation % is symmetric as well,

x % y , y % x ⇒ x = y . (3.11)

Summing up, we see that a T0 topology on a finite space P determines a
reflexive, antisymmetric and transitive relation, namely a partial order on P
which makes the latter a partially ordered set (poset). Conversely, given a
partial order % on the set P , one produces a topology on P by taking as a
basis for it the finite collection of ‘open’ sets defined by

Λ(x) =: {y ∈ P | y % x} , ∀ x ∈ P . (3.12)

Thus, a subset W ⊂ P will be open if and only if it is the union of sets of
the form (3.12), that is, if and only if x ∈ W and y % x ⇒ y ∈ W . Indeed,
the smallest open set containing W is given by

Λ(W ) =
⋃
x∈W

Λ(x) , (3.13)

and W is open if and only if W = Λ(W ).
The resulting topological space is clearly T0 by the antisymmetry of the order
relation.

It is easy to express the closure operation in terms of the partial order.
From (3.9), the closure V (x) = {x}, of the one point set {x} is given by

V (x) =: {y ∈ P | x % y} , ∀ x ∈ P . (3.14)

2 Another equivalent definition can be given by saying that x � y if and only if
the constant sequence (x, x, x, · · ·) converges to y. It is worth noticing that in a
T0-space the limit of a sequence need not be unique so that the constant sequence
(x, x, x, · · ·) may converge to more than one point.
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A subset W ⊂ P will be closed if and only if x ∈ W and x % y ⇒ y ∈ W .
Indeed, the closure of W is given by

V (W ) =
⋃
x∈W

V (x) , (3.15)

and W is closed if and only if W = V (W ).
If one relaxes the condition of finiteness of the space P , there is still

an equivalence between topology and partial order for any T0 topological
space which has the additional property that every intersection of open sets
is an open set (or equivalently, that every union of closed sets is a closed
set), so that the sets (3.5) are all open and provide a basis for the topology
[4, 22]. This would be the case if P were a finitary approximation of a (locally
compact) topological space M , obtained then from a locally finite covering
of M .3

Given two posets P,Q, it is clear that a map f : P → Q will be contin-
uous if and only if it is order preserving, i.e., if and only if from x %P y it
follows that f(x) %Q f(y); indeed, f is continuous if and only if it preserves
convergence of sequences.
In the sequel, x ≺ y will indicate that x precedes y while x 
= y.

A pictorial representation of the topology of a poset is obtained by con-
structing the associated Hasse diagram: one arranges the points of the poset
at different levels and connects them by using the following rules :

1. if x ≺ y, then x is at a lower level than y;
2. if x ≺ y and there is no z such that x ≺ z ≺ y, then x is at the level

immediately below y and these two points are connected by a link.

Figure 3.1 shows the Hasse diagram for P6(S1) whose basis of open sets
is in (3.3) and for P4(S1). For the former, the partial order reads α ≺ a, α ≺
c, β ≺ a, β ≺ b, γ ≺ b, γ ≺ c. The latter is a four point approximation
of S1 obtained from a covering consisting of two intersecting open sets. The
partial order reads x1 ≺ x3, x1 ≺ x4, x2 ≺ x3, x2 ≺ x4 .
In Fig. 3.1, (and in general, in any Hasse diagram) the smallest open set
containing any point x consists of all points which are below the given one,
x, and can be connected to it by a series of links. For instance, for P4(S1),
we get the following collection for the minimal open sets,

Λ(x1) = {x1} , Λ(x2) = {x2} ,

Λ(x3) = {x1, x2, x3} , Λ(x4) = {x1, x2, x4} ,
(3.16)

which are a basis for the topology of P4(S1).
3 In fact, Sorkin [141] regards as finitary only those posets P for which the sets
Λ(x) and V (x) defined in (3.13) and (3.14) respectively, are all finite. This would
be the case if the poset were derived from a locally compact topological space
with a locally finite covering consisting of bounded open sets.
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Fig. 3.1. The Hasse diagrams for P6(S1) and for P4(S1)
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Fig. 3.2. The finitary poset of the line R

The generic finitary poset P (R) associated with the real line R is shown in
Fig. 3.2. The corresponding projection π : R → P (R) is given by

Ui ∩ Ui+1 −→ xi , i ∈ Z ,
Ui+1 \ {Ui ∩ Ui+1

⋃
Ui+1 ∩ Ui+2} −→ yi , i ∈ Z .

(3.17)

A basis for the quotient topology is provided by the collection of all open sets
of the form

Λ(xi) = {xi} , Λ(yi) = {xi, yi, xi+1} , i ∈ Z . (3.18)

Figure 3.3 shows the Hasse diagram for the six-point poset P6(S2) of the two
dimensional sphere, coming from a covering with four open sets, which was
derived in [141]. A basis for its topology is given by



3.2 Order and Topology 27

� �

� �

� �

❅
❅
❅
❅
❅
❅

�
�
�
�
�
�
❅
❅
❅
❅
❅
❅

�
�
�
�
�
�

x5 x6

x3 x4

x1 x2

Fig. 3.3. The Hasse diagram for the poset P6(S2)

Λ(x1) = {x1} , Λ(x2) = {x2} ,

Λ(x3) = {x1, x2, x3} , Λ(x4) = {x1, x2, x4} ,

Λ(x5) = {x1, x2, x3, x4, x5} , Λ(x6) = {x1, x2, x3, x4, x6} .

(3.19)

Now, the top two points are closed, the bottom two points are open and the
intermediate ones are neither closed nor open.

As alluded to before, posets retain some of the topological information
of the space they approximate. For example, one can prove that for the first
homotopy group, π1(PN (S1)) = Z = π(S1) whenever N ≥ 4 [141]. Consider
the case N = 4. Elements of π1(P4(S1)) are homotopy classes of continuous
maps σ : [0, 1] → P4(S1), such that σ(0) = σ(1). With a any real number in
the open interval ]0, 1[, consider the map

σ(t) =




x3 if t = 0
x2 if 0 < t < a
x4 if t = a
x1 if a < t < 1
x3 if t = 1

. (3.20)

Figure 3.4 shows this map for a = 1/2; the map can be seen to ‘wind once
around’ P4(S1). Furthermore, the map σ in (3.20) is manifestly continuous,
being constructed in such a way that closed (respectively open) points of
P4(S1) are the images of closed (respectively open) sets of the interval [0, 1].
Hence it is automatic that the inverse image of an open set in P4(S1) is
open in [0, 1]. A bit of extra analysis shows that σ is not contractible to the
constant map: Any such contractible map being one that skips at least one
of the points of P4(S1), like the following one
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Fig. 3.4. A representative of the generator of the homotopy group π1(P4(S1))

σ0(t) =




x3 if t = 0
x2 if 0 < t < a
x4 if t = a
x2 if a < t < 1
x3 if t = 1

. (3.21)

This is shown in Fig. 3.5 for the value a = 1/2. Indeed, the not contractible
map in (3.20) is a generator of the group π1(P4(S1)) which can, therefore, be
identified with the group of integers Z.

Finally, we mention the notion of a Cartesian product of posets. If P
and Q are posets, their Cartesian product is the poset P × Q on the set
{(x, y) | x ∈ P, y ∈ Q} such that (x, y) % (x′, y′) in P ×Q if x % x′ in P and
y % y′ in Q. To draw the Hasse diagram of P×Q, one draws the diagram of P ,
replaces each element x of P with a copy Qx of Q and connects corresponding
elements of Qx and Qy (by identifying Qx ' Qy) if x and y are connected in
the diagram of P . Figure 3.6 shows the Hasse diagram of a poset P16(S1×S1)
obtained as P4(S1)× P4(S1).
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Fig. 3.5. A representative of the trivial class in the homotopy group π1(P4(S1))
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Fig. 3.6. The Hasse diagram for the poset P16(S1 × S1) = P4(S1) × P4(S1) (the
diagram has been rotated; the levels are counted horizontally)
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3.3 How to Recover the Space Being Approximated

We shall now briefly describe how the topological space being approximated
can be recovered ‘in the limit’ by considering a sequence of finer and finer
coverings, the appropriate framework being that of projective (or inverse)
systems of topological spaces [141].

Well, let us suppose we have a topological space M together with a se-
quence {Un}n∈N of finer and finer coverings, that is of coverings such that

Ui ⊆ τ(Ui+1) , (3.22)

where τ(U) is the topology generated by the covering U .4 Here we are re-
laxing the harmless assumption made in Sect. 3.1 that each U is already a
subtopology, namely that U = τ(U).

In Sect. 3.1 we have associated with each covering Ui a T0-topological
space Pi and a continuous surjection

πi : M → Pi . (3.23)

We now construct a projective system of spaces Pi together with continuous
maps

πij : Pj → Pi , (3.24)

defined whenever i ≤ j and such that

πi = πij ◦ πj . (3.25)

These maps are uniquely defined by the fact that the spaces Pi’s are T0 and
that the map πi is continuous with respect to τ(Uj) whenever i ≤ j. Indeed,
if U is open in Pi, then π(−1)

i (U) is open in the Ui-topology by definition,
thus it is also open in the finer Uj-topology and πi is continuous in τ(Uj).
Furthermore, uniqueness also implies the compatibility conditions

πij ◦ πjk = πik , (3.26)

whenever i ≤ j ≤ k.5 Notice that from the surjectivity of the maps πi’s and
the relation (3.25), it follows that all maps πij are surjective.
The projective system of topological spaces together with continuous maps
4 For more general situations, such as the system of all finite open covers of M , this
is not enough and one needs to consider a directed collection {Ui}i∈Λ of open
covers of M . Here directed just means that for any two coverings U1 and U2,
there exists a third cover U3 such that U1,U2 ⊆ τ(U3). The construction of the
remaining part of this Section applies to this more general situation if one defines
a partial order on the ‘set of indices’ Λ by declaring that i ≤ k ⇔ Ui ⊆ τ(Uj)
for any j, k ∈ Λ.

5 Indeed, the map πij is the solution (by definition it is then unique) of a universal
mapping problem for maps relating T0-spaces [141].
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{Pi, πij}i,j∈N has a unique projective limit, namely a topological space P∞,
together with continuous maps

πi∞ : P∞ → Pi , (3.27)

such that
πij ◦ πj∞ = πi∞ , (3.28)

whenever i ≤ j. The space P∞ and the maps πij can be constructed explicitly.
An element x ∈ P∞ is an arbitrary coherent sequence of elements xi ∈ Pi,

x = (xi)i∈N , xi ∈ Pi | ∃ N0 s.t. xi = πi,i+1(xi+1) , ∀ i ≥ N0 . (3.29)

As for the map πi∞, it is simply defined by

πi∞(x) = xi . (3.30)

The space P∞ is made into a T0 topological space by endowing it with the
weakest topology making all maps πi∞ continuous: a basis for it is given by
the sets π(−1)

i∞ (U), for all open sets U ⊂ Pi. The projective system and its
limit are depicted in Fig. 3.7.
It turns out that the limit space P∞ is bigger than the starting space M
and that the latter is contained as a dense subspace. Furthermore, M can be
characterized as the set of all closed points of Pi∞. Let us first observe that
we also get a unique (by universality) continuous map

π∞ : M → P∞ , (3.31)

which satisfies
πi = πi∞ ◦ π∞ , ∀ i ∈ N . (3.32)

The map π∞ is the ‘limit’ of the maps πi. However, while the latter are
surjective, under mild hypothesis the former turns out to be injective. We
have, indeed, the following two propositions [141].

Proposition 12. The image π∞(M) is dense in P∞.

Proof. If U ⊂ P∞ is any nonempty open set, by the definition of the topology
of P∞, U is the union of sets of the form π

(−1)
i∞ (Ui), with Ui open in Pi. Choose

xi ∈ Ui. Since πi is surjective, there is at least a point m ∈ M , for which
πi(m) = xi and let π∞(m) = x. Then πi∞(x) = πi∞(π∞)(m) = πi(m) = xi ,
from which x ∈ π(−1)

i∞ (xi) ⊂ π(−1)
i∞ (Ui) ⊂ U . This proves that π∞(M)∩U 
= ∅,

which establishes that π∞(M) is dense.

Proposition 13. Let M be T0 and the collection {Ui} of coverings be such
that for every m ∈ M and every neighborhood N � m, there exists an index
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Fig. 3.7. The projective system of topological spaces with continuous maps which
approximates the space M

i and an element U ∈ τ(Ui) such that m ∈ U ⊂ N . Then, the map π∞ is
injective.

Proof. If m1,m2 are two distinct points of M , since the latter is T0, there
is an open set V containing m1 (say) and not m2. By hypothesis, there
exists an index i and an open U ∈ τ(Ui) such that m1 ∈ U ⊂ V . There-
fore τ(Ui) distinguishes m1 from m2. Since Pi is the corresponding T0 quo-
tient, πi(m1) 
= πi(m2). Then πi∞(π∞(m1)) 
= πi∞(π∞(m2)), and in turn
π∞(m1) 
= π∞(m2).

We remark that, in a sense, the second condition in the previous proposition
just says that the covering Ui contains ‘enough small open sets’, a condition
one would expect in the process of recovering M by a refinement of the
coverings.

As alluded to before, there is a nice characterization of the points of M
(or better still of π∞(M)) as the set of all closed points of P∞. We have
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Fig. 3.8. The Hasse diagram for P2N (S1)

indeed a further Proposition; for the easy but long proof one is referred to
[141],

Proposition 14. Let M be T1 and let the collection {Ui} of coverings fulfill
the ‘fineness’ condition of Proposition 13. Let each covering Ui consist only of
sets which are bounded (have compact closure). Then π∞ : M → P∞ embeds
M in P∞ as the subspace of closed points.

We remark that the additional requirement on the element of each covering
is automatically fulfilled if M is compact.

As for the extra points of P∞, one can prove that for any extra y ∈ P∞,
there exists an x ∈ π∞(M) to which y is ‘infinitely close’. Indeed, P∞ can be
turned into a poset by defining a partial order relation as follows

x %∞ y ⇔ xi % yi , ∀ i , (3.33)

where the coherent sequences x = (xi) and y = (yi) are any two elements
of P∞.6 Then one can characterize π∞(M) as the set of maximal elements
of P∞, with respect to the order %∞. Given any such maximal element x,
the points of P∞ which are infinitely close to x are all (non maximal) points
which converge to x, namely all (not maximal) y ∈ P∞ such that y %∞ x.
In P∞, these points y cannot be separated from the corresponding x. By
identifying points in P∞ which cannot be separated one recovers M . The
interpretation that emerges is that the top points of a poset P (M) (which
are always closed) approximate the points of M and give all of M in the
limit. The rôle of the remaining points is to ‘glue’ the top points together so
as to produce a topologically nontrivial approximation to M . They also give
the extra points in the limit. Figure 3.8 shows the 2N -poset approximation
to S1 obtained with a covering consisting of N open sets. In Fig. 3.9 we have
the associated projective system of posets. As seen in that Figure, by going
6 In fact, one could directly construct P∞ as the projective limit of a projective
system of posets by defining a partial order on the coherent sequences as in
(3.33).
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Fig. 3.9. The projective system of posets for S1

from one level to the next one, only one of the bottom points x is ‘split’ in
three {x0, x1, x1} while the others are not changed. The projection from one
level to the previous one is the map which sends the triple {x0, x1, x1} to the
parent x while acting as the identity on the remaining points. The projection
is easily seen to be order preserving (and then continuous). As in the general
case, the limit space P∞ consists of S1 together with extra points. These
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extra points come in couples anyone of which is ‘glued’ (in the sense of being
infinitely close) to a point in a numerable collection of points. This collection
is dense in S1 and could be taken as the collection of all points of the form
{m/2n , m, n ∈ N} of the interval [0, 1] with endpoints identified.

In [12] a somewhat different interpretation of the approximation and of the
limiting procedure in terms of simplicial decompositions has been proposed.

3.4 Noncommutative Lattices

It turns out that any (finite) poset P is the structure space Â (the space of
irreducible representations, see Sect. 2.3) of a noncommutative C∗-algebra
A of operator valued functions which then plays the rôle of the algebra of
continuous functions on P .7 Indeed, there is a complete classification of all
separable8 C∗-algebras with a finite dual [9]. Given any finite T0-space P ,
it is possible to construct a C∗-algebra A(P, d) of operators on a separable9

Hilbert space H(P, d) which satisfies Â(P, d) = P . Here d is a function on
P with values in N ∪∞ which is called a defector. Thus there is more than
one algebra with the same structure space. We refer to [9, 73] for the actual
construction of the algebras together with extensions to countable posets.
Here, we shall instead describe a more general class of algebras, namely ap-
proximately finite dimensional ones, a subclass of which is associated with
posets. As the name suggests, these algebras can be approximated by finite
dimensional algebras, a fact which has been used in the construction of phys-
ical models on posets as we shall describe in Chap. 11. They are also useful
in the analysis of the K-theory of posets as we shall see in Chap. 5.

Before we proceed, we mention that if a separable C∗-algebra has a finite
dual than it is postliminal [9]. From Sect. 2.4 we know that for any such
algebra A, irreducible representations are completely characterized by their
kernels so that the structure space Â is homeomorphic with the space PrimA
of primitive ideals. As we shall see momentarily, the Jacobson topology on
PrimA is equivalent to the partial order defined by the inclusion of ideals.
This fact in a sense ‘closes the circle’ making any poset, when thought of
as the PrimA space of a noncommutative algebra, a truly noncommutative
space or, rather, a noncommutative lattice.
7 It is worth noticing that, a poset P being non Hausdorff, there cannot be ‘enough’

C-valued continuous functions on P since the latter separate points. For instance,
on the poset of Fig. 3.1 or Fig. 3.3 the only C-valued continuous functions are
the constant ones. In fact, the previous statement is true for each connected
component of any poset.

8 We recall that a C∗-algebra A is called separable if it admits a countable subset
which is dense in the norm topology of A.

9 Much as in the previous footnote, a Hilbert space H is called separable if it
admits a countable basis.
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3.4.1 The Space PrimA as a Poset
We recall that in Sect. 2.3.1 we introduced the natural T0-topology (the
Jacobson topology) on the space PrimA of primitive ideals of a noncommu-
tative C∗-algebra A. In particular, from Prop. 6, we have that, given any
subset W of PrimA,

W is closed ⇔ I ∈W and I ⊆ J ⇒ J ∈W . (3.34)

Now, a partial order % is naturally introduced on PrimA by inclusion,

I1 % I2 ⇔ I1 ⊆ I2 , ∀ I1, I2 ∈ PrimA . (3.35)

From what we said after (3.14), given any subset W of the topological space
(PrimA,%),

W is closed ⇔ I ∈W and I % J ⇒ J ∈W , (3.36)

which is just the partial order reading of (3.34). We infer that on PrimA the
Jacobson topology and the partial order topology can be identified.

3.4.2 AF-Algebras

In this Section we shall describe approximately finite dimensional algebras
following [17]. A general algebra of this sort may have a rather complicated
ideal structure and a complicated primitive ideal structure. As mentioned
before, for applications to posets only a special subclass is selected.

Definition 4. A C∗-algebra A is said to be approximately finite dimensional
(AF) if there exists an increasing sequence

A0
I0
↪→ A1

I1
↪→ A2

I2
↪→ · · · In−1

↪→ An
In
↪→· · · (3.37)

of finite dimensional C∗-subalgebras of A, such that A is the norm closure of⋃
nAn , A =

⋃
nAn. The maps In are injective ∗-morphisms.

The algebra A is the inductive (or direct) limit of the inductive (or direct)
system {An, In}n∈N of algebras [124, 153]. As a set,

⋃
nAn is made of coherent

sequences,⋃
n

An = {a = (an)n∈N , an ∈ An | ∃N0 , an+1 = In(an) ,∀ n > N0}. (3.38)

Now the sequence (||an||An)n∈N is eventually decreasing since ||an+1|| ≤ ||an||
(the maps In are norm decreasing) and therefore convergent. One writes for
the norm on A,

||(an)n∈N|| = lim
n→∞ ||an||An . (3.39)
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Since the maps In are injective, the expression (3.39) gives a true norm
directly and not simply a seminorm and there is no need to quotient out the
zero norm elements.
We shall assume that the algebra A has a unit I. If A and An are as before,
then An+CI is clearly a finite dimensional C∗-subalgebra of A and moreover,
An ⊂ An + CI ⊂ An+1 + CI. We may thus assume that each An contains the
unit I of A and that the maps In are unital.

Example 5. Let H be an infinite dimensional (separable) Hilbert space. The
algebra

A = K(H) + CIH , (3.40)

with K(H) the algebra of compact operators, is an AF-algebra [17]. The ap-
proximating algebras are given by

An = Mn(C)⊕ C , n > 0 , (3.41)

with embedding

Mn(C)⊕ C � (Λ, λ) �→
({

Λ 0
0 λ

}
, λ

)
∈ Mn+1(C)⊕ C . (3.42)

Indeed, let {ξn}n∈N be an orthonormal basis in H and let Hn be the subspace
generated by the first n basis elements, {ξ1, · · · , ξn}. With Pn the orthogonal
projection onto Hn, define

An = {T ∈ B(H) | T (I− Pn) = (I− Pn)T ∈ C(I− Pn)}
' B(Hn)⊕ C ' Mn(C)⊕ C .

(3.43)

Then An embeds in An+1 as in (3.42). Since each T ∈ An is a sum of a
finite rank operator and a multiple of the identity, one has that An ⊆ A =
K(H) + CIH and, in turn,

⋃
nAn ⊆ A = K(H) + CIH. Conversely, since

finite rank operators are norm dense in K(H), and finite linear combinations
of strings {ξ1, · · · , ξn} are dense in H, one gets that K(H) + CIH ⊂

⋃
nAn.

The algebra (3.40) has only two irreducible representations [9],

π1 : A −→ B(H) , a = (k + λIH) �→ π1(a) = a ,
π2 : A −→ B(C) ' C , a = (k + λIH) �→ π2(a) = λ ,

(3.44)

with λ1, λ2 ∈ C and k ∈ K(H); the corresponding kernels being

I1 =: ker(π1) = {0} ,
I2 =: ker(π2) = K(H) . (3.45)

The partial order given by the inclusions I1 ⊂ I2 produces the two point poset
shown in Fig. 3.10. As we shall see, this space is really the fundamental build-
ing block for all posets. A comparison with the poset of the line in Fig. 3.2,
shows that it can be thought of as a two point approximation of an interval.



38 3 Projective Systems of Noncommutative Lattices

�

�
✁
✁
✁
✁
✁
✁

I2

I1

Fig. 3.10. The two point poset of the interval

In general, each subalgebra An being a finite dimensional C∗-algebra, is
a direct sum of matrix algebras,

An =
kn⊕
k=1

M
d
(n)
k

(C) , (3.46)

where Md(C) is the algebra of d × d matrices with complex coefficients. In
order to study the embedding A1 ↪→ A2 of any two such algebras A1 =⊕n1

j=1 M
d
(1)
j

(C) and A2 =
⊕n2

k=1 M
d
(2)
k

(C), the following proposition [68, 153]
is useful.

Proposition 15. Let A and B be the direct sum of two matrix algebras,

A = Mp1(C)⊕Mp2(C) , B = Mq1(C)⊕Mq2(C) . (3.47)

Then, any (unital) morphism α : A → B can be written as the direct sum of
the representations αj : A → Mqj (C) ' B(Cqj ), j = 1, 2. If πji is the unique
irreducible representation of Mpi

(C) in B(Cqj ), then αj splits into a direct
sum of the πji’s with multiplicity Nji, the latter being nonnegative integers.

Proof. This proposition just says that, by suppressing the symbols πji, and
modulo a change of basis, the morphism α : A → B is of the form

A
⊕

B �→ A⊕ · · · ⊕A︸ ︷︷ ︸
N11

⊕B ⊕ · · · ⊕B︸ ︷︷ ︸
N12

⊕
A⊕ · · · ⊕A︸ ︷︷ ︸

N21

⊕B ⊕ · · · ⊕B︸ ︷︷ ︸
N22

,

(3.48)
with A

⊕
B ∈ A. Moreover, the dimensions (p1, p2) and (q1, q2) are related

by
N11p1 +N12p2 = q1 ,
N21p1 +N22p2 = q2 .

(3.49)

Given a unital embedding A1 ↪→ A2 of the algebras A1 =
⊕n1

j=1 M
d
(1)
j

(C)

and A2 =
⊕n2

k=1 M
d
(2)
k

(C), by making use of Proposition 15 one can always
choose suitable bases in A1 and A2 in such a way as to identify A1 with a
subalgebra of A2 having the following form
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A1 '
n2⊕
k=1


 n1⊕

j=1

NkjMd
(1)
j

(C)


 . (3.50)

Here, with any two nonnegative integers p, q, the symbol pMq(C) stands for

pMq(C) ' Mq(C)⊗C Ip , (3.51)

and one identifies
⊕n1

j=1NkjMd
(1)
j

(C) with a subalgebra of M
d
(2)
k

(C). The
nonnegative integers Nkj satisfy the condition

n1∑
j=1

Nkjd
(1)
j = d

(2)
k . (3.52)

One says that the algebra M
d
(1)
j

(C) is partially embedded in M
d
(2)
k

(C) with
multiplicity Nkj . A useful way of representing the algebras A1, A2 and the
embedding A1 ↪→ A2 is by means of a diagram, the so called Bratteli diagram
[17], which can be constructed out of the dimensions d(1)j , j = 1, . . . , n1 and

d
(2)
k , k = 1, . . . , n2, of the diagonal blocks of the two algebras and out of the

numbers Nkj that describe the partial embeddings. One draws two horizontal
rows of vertices, the top (bottom) one representing A1 (A2) and consisting
of n1 (n2) vertices, one for each block which are labeled by the corresponding
dimensions d(1)1 , . . . , d

(1)
n1 (d(2)1 , . . . , d

(2)
n2 ). Then, for each j = 1, . . . , n1 and

k = 1, . . . , n2, one has a relation d(1)j ↘Nkj d
(2)
k to denote the fact that

M
d
(1)
j

(C) is embedded in M
d
(2)
k

(C) with multiplicity Nkj .
For any AF-algebra A one repeats the procedure for each level, and in this

way one obtains a semi-infinite diagram, denoted by D(A) which completely
defines A up to isomorphism. The diagram D(A) depends not only on the
collection of A’s but also on the particular sequence {An}n∈N which generates
A. However, one can obtain an algorithm which allows one to construct from
a given diagram all diagrams which define AF-algebras which are isomorphic
with the original one [17]. The problem of identifying the limit algebra or
of determining whether or not two such limits are isomorphic can be very
subtle. Elliot [70] has devised an invariant for AF-algebras in terms of the
corresponding K theory which completely distinguishes among them (see
also [68]). We shall elaborate a bit on this in Chap. 5. It is worth remarking
that the isomorphism class of an AF-algebra

⋃
nAn depends not only on the

collection of algebras An’s but also on the way they are embedded into each
other.

Any AF-algebra is clearly separable but the converse is not true. Indeed,
one can prove that a separable C∗-algebra A is an AF-algebra if and only if it
has the following approximation property: for each finite set {a1, . . . , an} of
elements of A and ε > 0, there exists a finite dimensional C∗-algebra B ⊆ A
and elements b1, . . . , bn ∈ B such that ||ak − bk|| < ε, k = 1, . . . , n.
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Given a set D of ordered pairs (n, k), k = 1, · · · , kn , n = 0, 1, · · ·, with
k0 = 1, and a sequence {↘p}p=0,1,··· of relations on D, the latter is the
diagram D(A) of an AF-algebras when the following conditions are satisfied,

(i) If (n, k), (m, q) ∈ D and m = n + 1, there exists one and only one
nonnegative (or equivalently, at most a positive) integer p such that
(n, k) ↘p (n+ 1, q).

(ii) If m 
= n+ 1, no such integer exists.
(iii) If (n, k) ∈ D, there exists q ∈ {1, · · · , nn+1} and a nonnegative integer p

such that (n, k) ↘p (n+ 1, q).
(iv) If (n, k) ∈ D and n > 0, there exists q ∈ {1, · · · , nn−1} and a nonnegative

integer p such that (n− 1, q) ↘p (n, k).

It is easy to see that the diagram of a given AF-algebra satisfies the
previous conditions. Conversely, if the set D of ordered pairs satisfies these
properties, one constructs by induction a sequence of finite dimensional C∗-
algebras {An}n∈N and of injective morphisms In : An → An+1 in such a
manner so that the inductive limit {An, In}n∈N will have D as its diagram.
Explicitly, one defines

An =
⊕

k;(n,k)∈D
M

d
(n)
k

(C) =
kn⊕
k=1

M
d
(n)
k

(C) , (3.53)

and morphisms

In :
⊕jn

j=1 M
d
(n)
j

(C) −→⊕kn+1
k=1 M

d
(n+1)
k

(C) ,

A1 ⊕ · · · ⊕Ajn
�→ (⊕jn

j=1N1jAj)
⊕ · · ·⊕(⊕jn

j=1Nkn+1jAj) ,
(3.54)

where the integers Nkj are such that (n, j) ↘Nkj (n+ 1, k) and we have used
the notation (3.51). Notice that the dimension d(n+1)

k of the factor M
d
(n+1)
k

(C)
is not arbitrary but it is determined by a relation like (3.52),

d
(n+1)
k =

jn∑
j=1

Nkjd
(n)
j . (3.55)

Example 6. An AF-algebra A is commutative if and only if all the factors
M

d
(n)
k

(C) are one dimensional, M
d
(n)
k

(C) ' C. Thus the corresponding dia-
gram D has the property that for each (n, k) ∈ D, n > 0, there is exactly one
(n− 1, j) ∈ D such that (n− 1, j) ↘1 (n, k).
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There is a very nice characterization of commutative AF-algebras and of their
primitive spectra [18],

Proposition 16. Let A be a commutative C∗-algebra with unit I. Then the
following statements are equivalent.

(i) The algebra A is AF.
(ii) The algebra A is generated in the norm topology by a sequence of projec-

tors {Pi}, with P0 = I.
(iii) The space PrimA is a second-countable, totally disconnected, compact

Hausdorff space.10

Proof. The equivalence of (i) and (ii) is clear. To prove that (iii) implies
(ii), let X be a second-countable, totally disconnected, compact Hausdorff
space. Then X has a countable basis {Xn} of open-closed sets. Let Pn be the
characteristic function of Xn. The ∗-algebra generated by the projector {Pn}
is dense in C(X): since PrimC(X) = X, (iii) implies (ii). The converse, that
(ii) implies (iii), follows from the fact that projectors in a commutative C∗-
algebra A correspond to open-closed subsets in its primitive space PrimA.

Example 7. Let us consider the subalgebra A of the algebra B(H) of bounded
operators on an infinite dimensional (separable) Hilbert space H = H1 ⊕H2,
given in the following manner. Let Pj be the projection operators on Hj , j =
1, 2, and K(H) the algebra of compact operators on H. Then, the algebra A
is

A∨ = CP1 +K(H) + CP2 . (3.56)

The use of the symbol A∨ is due to the fact that, as we shall see below, this
algebra is associated with any part of the poset of the line in Fig. 3.2, of the
form ∨

= {yi−1, xi, yi} , (3.57)

in the sense that this poset is identified with the space of primitive ideals
of A∨. The C∗-algebra (3.56) can be obtained as the inductive limit of the
following sequence of finite dimensional algebras:

A0 = M1(C) ,
A1 = M1(C)⊕M1(C) ,
A2 = M1(C)⊕M2(C)⊕M1(C) ,
A3 = M1(C)⊕M4(C)⊕M1(C) ,
...

An = M1(C)⊕M2n−2(C)⊕M1(C) ,
...

(3.58)

10 We recall that a topological space is called totally disconnected if the connected
component of each point consists only of the point itself. Also, a topological
space is called second-countable if it admits a countable basis of open sets.
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Fig. 3.11. The Bratteli diagram of the algebra A∨; the labels indicate the dimen-
sion of the corresponding matrix algebras

where, for n ≥ 1, An is embedded in An+1 as follows

M1(C)⊕M2n−2(C)⊕M1(C) ↪→
↪→ M1(C)⊕ (M1(C)⊕M2n−2(C)⊕M1(C))⊕M1(C) ,


λ1 0 0

0 B 0
0 0 λ2


 �→



λ1 0 0 0 0
0 λ1 0 0 0
0 0 B 0 0
0 0 0 λ2 0
0 0 0 0 λ2


 , (3.59)

for any λ1, λ2 ∈ M1(C) and any B ∈ M2n−2(C). The corresponding Brat-
teli diagram is shown in Fig. 3.11. The algebra (3.56) has three irreducible
representations,

π1 : A∨ −→ B(H) , a = (λ1P1 + k + λ2P2) �→ π1(a) = a ,
π2 : A∨ −→ B(C) ' C , a = (λ1P1 + k + λ2P2) �→ π2(a) = λ1 ,
π3 : A∨ −→ B(C) ' C , a = (λ1P1 + k + λ2P2) �→ π3(a) = λ2 ,

(3.60)

with λ1, λ2 ∈ C and k ∈ K(H). The corresponding kernels are

I1 = {0} ,
I2 = K(H) + CP2 ,
I3 = CP1 +K(H) .

(3.61)

The partial order given by the inclusions I1 ⊂ I2 and I1 ⊂ I3 (which, as
shown in Sect. 3.4.1 is an equivalent way to provide the Jacobson topology)
produces a topological space PrimA∨ which is just the

∨
poset in (3.57).
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3.4.3 From Bratteli Diagrams to Noncommutative Lattices

From the Bratteli diagram of an AF-algebra A one can also obtain the (norm
closed two-sided) ideals of the latter and determine which ones are primitive.
On the set of such ideals the topology is then given by constructing a poset
whose partial order is provided by the inclusion of ideals. Therefore, both
Prim(A) and its topology can be determined from the Bratteli diagram of
A. This is possible thanks to the following results of Bratteli [17].

Proposition 17. Let A =
⋃

n Un be any AF-algebra with associated Bratteli
diagram D(A). Let I be an ideal of A. Then I has the form

I =
∞⋃
n=1

⊕k;(n,k)∈ΛI M
d
(n)
k

(C) (3.62)

with the subset ΛI ⊂ D(A) satisfying the following two properties:

i) if (n, k) ∈ ΛI and (n, k) ↘p (n + 1, j) , p > 0, then (n + 1, j) belongs to
ΛI ;

ii) if all factors (n + 1, j) , j = 1, . . . , nn+1, in which (n, k) is partially em-
bedded belong to ΛI , then (n, k) belongs to ΛI .

Conversely, if Λ ⊂ D(A) satisfies properties (i) and (ii) above, then the subset
IΛ of A defined by (3.62) (with Λ substituted for ΛI) is an ideal in A such
that I⋂An = ⊕k;(n,k)∈ΛI M

d
(n)
k

(C).

Proposition 18. Let A =
⋃

n Un, let I be an ideal of A and let ΛI ⊂ D(A)
be the associated subdiagram. Then the following three conditions are equiv-
alent.11

(i) The ideal I is primitive.
(ii) There do not exist two ideals I1, I2 ∈ A such that I1 
= I 
= I2 and

I = I1 ∩ I2.
(iii) If (n, k), (m, q) /∈ ΛI , there exists an integer p ≥ n, p ≥ m, and a

couple (p, r) /∈ ΛI such that M
d
(n)
k

(C) and M
d
(m)
q

(C) are both partially
embedded in M

d
(p)
r

(C) (equivalently, there are two sequences along the
diagram D(A) starting at the points (n, k) and (m, q) with both ending at
the same point (p, r)).

We recall that the whole of A is an ideal which, by definition, is not primitive
since the trivial representation A → 0 is not irreducible. Furthermore, the
ideal {0} ⊂ A is primitive if and only if A is primitive, which means that
it has an irreducible faithful representation. This fact can also be inferred
11 In fact, the equivalence of (i) and (ii) is true for any separable C∗-algebra [55].
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Fig. 3.12. The three ideals of the algebra A∨

from the Bratteli diagram. Now, the ideal {0}, being represented at each
level by the element 0 ∈ An

12, is not associated with any subdiagram of
D(A). Therefore, to check if {0} is primitive, we have the following corollary
of Proposition 18.

Proposition 19. Let A =
⋃

n Un. Then the following conditions are equiva-
lent.

(i) The algebra A is primitive (the ideal {0} is primitive).
(ii) There do not exist two ideals in A different from {0} whose intersection

is {0}.
(iii) If (n, k), (m, q) ∈ D(A), there exists an integer p ≥ n, p ≥ m, and a

couple (p, r) ∈ D(A) such that M
d
(n)
k

(C) and M
d
(m)
q

(C) are both partially
embedded in M

d
(p)
r

(C) (equivalently, any two points of the diagram D(A)
can be connected to a single point at a lower level of the diagram).

For instance, from the diagram of Fig. 3.11 we infer that the corresponding
algebra is primitive, meaning that the ideal {0} is primitive.

Example 8. As a simple example, consider the diagram of Fig. 3.11. The
corresponding AF-algebra A∨ in (3.56) contains only three nontrivial ideals
whose diagrammatic representation is in Fig. 3.12.
In these pictures the points belonging to the same ideal are marked with a
“•”. It is not difficult to check that only I2 and I3 are primitive ideals, since
12 In fact one could think of Λ{0} as being the empty set.
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IK does not satisfy the property (iii) above. Now I1 = {0} is an ideal which
clearly belongs to both I2 and I3 so that Prim(A) is any

∨
part of Fig. 3.2 of

the form
∨

= {yi−1, xi, yi}. From the diagram of Fig. 3.12 one immediately
obtains

I2 = CIH +K(H) ,
I1 = CIH +K(H) , (3.63)

H being an infinite dimensional Hilbert space. Thus, I2 and I3 can be iden-
tified with the corresponding ideals of A∨ given in (3.61). As for IK, from
Fig. 3.12 one gets IK = K(H) which is not a primitive ideal of A∨.

3.4.4 From Noncommutative Lattices to Bratteli Diagrams

There is also a reverse procedure which allows one to construct an AF-algebra
(or rather its Bratteli diagram D(A)) whose primitive ideal space is a given
(finitary, noncommutative) lattice P [18, 19]. We shall briefly describe this
procedure while referring to [72, 73] for more details and several examples.

Proposition 20. Let P be a topological space with the following properties,

(i) The space P is T0;
(ii) If F ⊂ P is a closed set which is not the union of two proper closed

subsets, then F is the closure of a one-point set;
(iii) The space P contains at most a countable number of closed sets;
(iv) If {Fn}n is a decreasing (Fn+1 ⊆ Fn) sequence of closed subsets of P ,

then
⋂

n Fn is an element in {Fn}n.
Then, there exists an AF algebra A whose primitive space PrimA is home-
omorphic to P .

Proof. The proof consists in constructing explicitly the Bratteli diagramD(A)
of the algebra A. We shall sketch the main steps while referring to [18, 19]
for more details.

• Let {K0,K1,K2, . . .} be the collection of all closed sets in the lattice P ,
with K0 = P .

• Consider the subcollection Kn = {K0,K1, . . . ,Kn} and let K′
n be the small-

est collection of (closed) sets in P containing Kn which is closed under
union and intersection.

• Consider the algebra of sets13 generated by the collection Kn. Then, the
minimal sets Yn = {Yn(1), Yn(2), . . . , Yn(kn)} of this algebra form a par-
tition of P .

13 We recall that a non empty collection R of subsets of a set X is called an algebra
of sets if R is closed under the operations of union, i.e. E,F ∈ R⇒ E ∪ F ∈ R,
and of complement, i.e. E ∈ R⇒ Ec =: X \ E ∈ R.



46 3 Projective Systems of Noncommutative Lattices

• Let Fn(j) be the smallest set in the subcollection K′
n which contains Yn(j).

Define Fn = {Fn(1), Fn(2), . . . , Fn(kn)}.
• As a consequence of the assumptions in the Proposition one has that

Yn(k) ⊆ Fn(k) , (3.64)⋃
k

Yn(k) = P , (3.65)

⋃
k

Fn(k) = P , (3.66)

Yn(k) = Fn(k) \
⋃
p�=k

{Fn(p) | Fn(p) ⊂ Fn(k)} , (3.67)

Fn(k) =
⋃
p

{Fn+1(p) | Fn+1(p) ⊆ Fn(k)} , (3.68)

If F ⊂ P is closed , ∃ n ≥ 0 , s.t.

Fn(k) =
⋃
p

{Fn(p) | Fn(p) ⊆ F} . (3.69)

• The diagram D(A) is constructed as follows.
(1.) The n-th level of D(A) has kn points, one for each set Yn(k),

wherek = 1, · · · , kn.
Thus D(A) is the set of all ordered pairs (n, k),
k = 1, . . . , kn, n = 0, 1, . . . .

(2.) The point corresponding to Yn(k) at level n of the diagram is linked
to the point corresponding to Yn+1(j) at level n + 1, if and only if
Yn(k) ∩ Fn+1(j) 
= ∅. The multiplicity of the embedding is always 1.
Thus, the partial embeddings of the diagram are given by

(n, k) ↘p (n+ 1, j) , with
p = 1 if Yn(k) ∩ Fn+1(j) 
= ∅ ,
p = 0 otherwise .

(3.70)

That the diagram D(A) is really the diagram of an AF algebra A, namely
that conditions (i)− (iv) of page 40 are satisfied, follows from the conditions
(3.64)-(3.69) above.
Before we proceed, recall from Proposition (5) that there is a bijective cor-
respondence between ideals in a C∗-algebra and closed sets in PrimA, the
correspondence being given by (2.36). We shall construct a similar correspon-
dence between closed subsets F ⊆ P and the ideals IF in the AF-algebra A
with subdiagram ΛF ⊆ D(A). Given then, a closed subset F ⊆ P , from
(3.69), there exists an m such that F ⊆ K′

m. Define

(ΛF )n = {(n, k) | n ≥ m , Yn(k) ∩ F = ∅} . (3.71)
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By using (3.67) one proves that conditions (i) and (ii) of Proposition 17 are
satisfied. As a consequence, if ΛF is the smallest subdiagram corresponding
to an ideal IF , namely the smallest subdiagram satisfying conditions (i) and
(ii) of Proposition 17, which also contains (ΛF )n, one has that

(ΛF )n = ΛF

⋂
{(n, k) | (n, k) ∈ D(A), n ≥ m} , (3.72)

which, in turn, implies that the mapping F �→ ΛF ↔ IF is injective.
To show surjectivity, let I be an ideal in A with associated subdiagram ΛI .
For n = 0, 1, . . ., define

Fn = P \
⋃
k

{Yn(k) | ∃(n− 1, p) ∈ ΛI , (n− 1, p) ↘1 (n, k) ∈ ΛI} . (3.73)

Then {Fn}n is a decreasing sequence of closed sets in P . By assumption (iv),
there exists an m such that Fm =

⋂
n Fn. By defining F = Fm, one has

Fn = F for n ≥ m and

ΛI
⋂
{(n, k) | n ≥ m} =: (ΛF )m . (3.74)

Thus, ΛI = ΛF and the mapping F �→ IF is surjective.
Finally, from the definition it follows that

F1 ⊆ F2 ⇐⇒ IF1 ⊇ IF2 . (3.75)

For any point x ∈ P , the closure {x} is not the union of two proper closed
subsets. From (3.75), the corresponding ideal I{x} is not the intersection
of two ideals different from itself, thus it is primitive (see Proposition 18).
Conversely, if IF is primitive, it is not the intersection of two ideals different
from itself, thus from (3.75) F is not the union of two proper closed subsets,
and from assumption (ii), it is the closure of a one-point set. We have then
proven that the ideal IF is primitive if and only if F is the closure of a one-
point set.
By taking into account the bijection between closed sets of the space P and
ideals of the algebra A and the corresponding bijection between closed sets
of the space PrimA and ideals of the algebra A, we see that the bijection
between P and PrimA which associates the corresponding primitive ideal to
any point of P , is a homeomorphism.

We know that different algebras could yield the same space of primitive ideals
(see the notion of strong Morita equivalence in App. A.4). It may happen
that by changing the order in which the closed sets of P are taken in the
construction of the previous proposition, one produces different algebras, all
having the same space of primitive ideals though, and so all producing spaces
which are homeomorphic to the starting P (any two of these spaces being, a
fortiori, homeomorphic).
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Example 9. As a simple example, consider again the lattice,∨
= {yi−1, xi, yi} ≡ {x2, x1, x3} . (3.76)

This topological space contains four closed sets:

K0 = {x2, x1, x3} ,K1 = {x2} ,K2 = {x3} ,K3 = {x2, x3} = K1 ∪K2 .
(3.77)

Thus, with the notation of Proposition 20, it is not difficult to check that:

K0 = {K0} , K′
0 = {K0} ,

K1 = {K0,K1} , K′
1 = {K0,K1} ,

K2 = {K0,K1,K2} , K′
2 = {K0,K1,K2,K3} ,

K3 = {K0,K1,K2,K3} , K′
3 = {K0,K1,K2,K3} ,

...

Y0(1) = {x1, x2, x3} , F0(1) = K0 ,

Y1(1) = {x2} , Y1(2) = {x1, x3} , F1(1) = K1 , F1(2) = K0 ,

Y2(1) = {x2} , Y2(2) = {x1} , F2(1) = K1 , F2(2) = K0 ,
Y2(3) = {x3} , F2(3) = K2 ,

Y3(1) = {x2} , Y3(2) = {x1} , F3(1) = K1 , F3(2) = K0 ,
Y3(3) = {x3} , F3(2) = K2 ,
...

(3.78)
Since

∨
has only a finite number of points (three), and hence a finite number

of closed sets (four), the partition of
∨
repeats itself after the third level.

Figure 3.13 shows the corresponding diagram, obtained through rules (1.)
and (2.) in Proposition 20 above (on page 46). By using the fact that the first
matrix algebra A0 is C and the fact that all the embeddings have multiplicity
one, the diagram of Fig. 3.13 is seen to coincide with the diagram of Fig. 3.11.
As we have previously said, the latter corresponds to the AF-algebra

A∨ = CP1 +K(H) + CP2 , H = H1 ⊕H2 . (3.79)

Example 10. Another interesting example is provided by the lattice P4(S1)
for the one-dimensional sphere in Fig. 3.1. This topological space contains
six closed sets:

K0 = {x1, x2, x3, x4} , K1 = {x1, x3, x4} , K2 = {x3} , K3 = {x4} ,
K4 = {x2, x3, x4} , K5 = {x3, x4} = K2 ∪K3 .

(3.80)
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Fig. 3.13. The Bratteli diagram associated with the poset
∨
; the label nk stands

for Yn(k)

Thus, with the notation of Proposition 20, one finds,

K0 = {K0} , K′
0 = {K0} ,

K1 = {K0,K1} , K′
1 = {K0,K1} ,

K2 = {K0,K1,K2} , K′
2 = {K0,K1,K2} ,

K3 = {K0,K1,K2,K3} , K′
3 = {K0,K1,K2,K3,K5} ,

K4 = {K0,K1,K2,K3,K4} , K′
4 = {K0,K1,K2,K3,K4,K5} ,

K5 = {K0,K1,K2,K3,K4,K5} , K′
5 = {K0,K1,K2,K3,K4,K5} ,

...

Y0(1) = {x1, x2, x3, x4} , F0(1) = K0 ,

Y1(1) = {x1, x3, x4} , Y1(2) = {x2} , F1(1) = K1 , F1(2) = K0 ,

Y2(1) = {x3} , Y2(2) = {x2} , F2(1) = K2 , F2(2) = K0 ,
Y2(3) = {x1, x4} , F2(3) = K1 ,

Y3(1) = {x3} , Y3(2) = {x2} , F3(1) = K2 , F3(2) = K0 ,
Y3(3) = {x1} , Y3(4) = {x4} , F3(3) = K1 , F3(4) = K3 ,

Y4(1) = {x3} , Y4(2) = {x2} , F4(1) = K2 , F4(2) = K4 ,
Y4(3) = {x1} , Y4(4) = {x4} , F4(3) = K1 , F4(4) = K3 ,

Y5(1) = {x3} , Y5(2) = {x2} , F5(1) = K2 , F5(2) = K4 ,
Y5(3) = {x1} , Y5(4) = {x4} , F5(3) = K1 , F5(4) = K3 ,
...

(3.81)
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Fig. 3.14. The Bratteli diagram for the circle poset P4(S1)

Since there are a finite number of points (four), and hence a finite number of
closed sets (six), the partition of P4(S1) repeats itself after the fourth level.
The corresponding Bratteli diagram is exhibited in Fig. 3.14. The ideal {0}
is not primitive. The algebra is given by

A0 = M1(C) ,
A1 = M1(C)⊕M1(C) ,
A2 = M1(C)⊕M2(C)⊕M1(C) ,
A3 = M1(C)⊕M4(C)⊕M2(C)⊕M1(C) ,
A4 = M1(C)⊕M6(C)⊕M4(C)⊕M1(C) ,
...

An = M1(C)⊕M2n−2(C)⊕M2n−4(C)⊕M1(C) ,
...

(3.82)

where, for n > 2, An is embedded in An+1 as follows



λ1
B
C
λ2


 �→




λ1
λ1 0 0
0 B 0
0 0 λ2

λ1 0 0
0 C 0
0 0 λ2

λ2



, (3.83)
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with λ1, λ2 ∈ M1(C), B ∈ M2n−2(C) and C ∈ M2n−4(C); elements which
are not shown are equal to zero. The algebra limit AP4(S1) can be realized
explicitly as a subalgebra of bounded operators on an infinite dimensional
Hilbert space H naturally associated with the poset P4(S1). Firstly, to any
link (xi, xj), xi 3 xj , of the poset one associates a Hilbert space Hij; for the
case at hand, one has four Hilbert spaces, H31,H32,H41,H42. Then, since all
links are at the same level, H is just given by the direct sum

H = H31 ⊕H32 ⊕H41 ⊕H42 . (3.84)

The algebra AP4(S1) is given by [73],

AP4(S1) = CPH31⊕H32 +KH31⊕H41 +KH32⊕H42 + CPH41⊕H42 . (3.85)

Here K denotes compact operators and P orthogonal projection. The algebra
(3.85) has four irreducible representations. Any element a ∈ AP4(S1) is of the
form

a = λP3,12 + k34,1 + k34,2 + µP4,12 , (3.86)

with λ, µ ∈ C, k34,1 ∈ KH31⊕H41 and k34,2 ∈ KH32⊕H42 . The representations
are the following ones,

π1 : AP4(S1) −→ B(H) , a �→ π1(a) = λP3,12 + k34,1 + µP4,12 ,
π2 : AP4(S1) −→ B(H) , a �→ π2(a) = λP3,12 + k34,2 + µP4,12 ,
π3 : AP4(S1) −→ B(C) ' C , a �→ π3(a) = λ ,
π4 : AP4(S1) −→ B(C) ' C , a �→ π4(a) = µ .

(3.87)

The corresponding kernels are

I1 = KH32⊕H42 ,
I2 = KH31⊕H41 ,
I3 = KH31⊕H41 +KH32⊕H42 + CPH41⊕H42 ,
I4 = CPH31⊕H32 +KH31⊕H41 +KH32⊕H42 .

(3.88)

The partial order given by the inclusions I1 ⊂ I3, I1 ⊂ I4 and I2 ⊂ I3,
I2 ⊂ I4 produces a topological space PrimAP4(S1) which is just the circle
poset in Fig. 3.1.

Example 11. We shall now give an example of a three-level poset. It cor-
responds to an approximation of a two dimensional topological space (or a
portion thereof).
This topological space, shown in Fig. 3.15, contains five closed sets:

K0 = {x1} = {x1, x2, x3, x4} , K1 = {x2} = {x2, x3, x4} ,
K2 = {x3} = {x3} , K3 = {x4} = {x4} ,
K4 = {x3, x4} = K2 ∪K3 .

(3.89)
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Fig. 3.15. A poset approximating a two dimensional space

Thus, still with the notations of Proposition 20, one finds,

K0 = {K0} , K′
0 = {K0} ,

K1 = {K0,K1} , K′
1 = {K0,K1} ,

K2 = {K0,K1,K2} , K′
2 = {K0,K1,K2} ,

K3 = {K0,K1,K2,K3} , K′
3 = {K0,K1,K2,K3,K4} ,

K4 = {K0,K1,K2,K3,K4} , K′
4 = {K0,K1,K2,K3,K4} ,

...

Y0(1) = {x1, x2, x3, x4} , F0(1) = K0 ,

Y1(1) = {x2, x3, x4} ,
Y1(2) = {x1} , F1(1) = K1 , F1(2) = K0 ,

Y2(1) = {x3} , Y2(2) = {x1} , F2(1) = K2 , F2(2) = K0 ,
Y2(3) = {x2, x4} , F2(3) = K1 ,

Y3(1) = {x3} , Y3(2) = {x1} , F3(1) = K2 , F3(2) = K0 ,
Y3(3) = {x2} , Y3(4) = {x4} , F3(3) = K1 , F3(4) = K3 ,

Y4(1) = {x3} , Y4(2) = {x1} , F4(1) = K2 , F4(2) = K0 ,
Y4(3) = {x2} , Y4(4) = {x4} , F4(3) = K1 , F4(4) = K3 ,

...
(3.90)

Since there are a finite number of points (four), and hence a finite number
of closed sets (five), the partition of the poset repeats after the fourth level.
The corresponding Bratteli diagram is shows in Fig. 3.16. The ideal {0} is
primitive. The corresponding algebra is given by
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Fig. 3.16. The Bratteli diagram for the poset Y of previous Figure

A0 = M1(C) ,
A1 = M1(C)⊕M1(C) ,
A2 = M1(C)⊕M2(C)⊕M1(C) ,
A3 = M1(C)⊕M4(C)⊕M2(C)⊕M1(C) ,
A4 = M1(C)⊕M8(C)⊕M4(C)⊕M1(C) ,
...

An = M1(C)⊕Mn2−3n+4(C)⊕M2n−4(C)⊕M1(C) ,
...

(3.91)

where, for n > 2, An is embedded in An+1 as follows



λ1
B
C
λ2


 �→




λ1
λ1 0 0 0
0 B 0 0
0 0 C 0
0 0 0 λ2

λ1 0 0
0 C 0
0 0 λ2

λ2



, (3.92)

with λ1, λ2 ∈ M1(C), B ∈ Mn2−3n+4(C) and C ∈ M2n−4(C); elements which
are not shown are equal to zero. Again, the algebra limit AY can be given as
a subalgebra of bounded operators on a Hilbert space H. The Hilbert spaces
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associated with the links of the poset will be H32,H42,H21. The difference
with the previous example is that now there are links at different levels. On
passing from one level to the next (or previous one) one introduces tensor
products. The Hilbert space H is given by

H = H32 ⊗H21 ⊕H42 ⊗H21 ' (H32 ⊕H42)⊗H21 . (3.93)

The algebra AY is then given by [73],

AY = CPH32⊗H21+KH32⊕H42⊗PH21+K(H32⊕H42)⊗H21+CPH42⊗H21 . (3.94)

Here K denotes compact operators and P orthogonal projection. This algebra
has four irreducible representations. Any element of it is of the form

a = λP321 + k34,2 ⊗ P21 + k34,21 + µP421 , (3.95)

with λ, µ ∈ C, k34,2 ∈ KH32⊕H42 and k34,21 ∈ K(H32⊕H42)⊗H21 . The represen-
tations are the following ones,

π1 : AY −→ B(H) , a �→ π1(a) = λP321 + k34,2 ⊗ P21 + k34,21 + µP421 ,
π2 : AY −→ B(H) , a �→ π2(a) = λP321 + k34,2 ⊗ P21 + µP421 ,
π3 : AY −→ B(C) ' C , a �→ π3(a) = λ ,
π4 : AY −→ B(C) ' C , a �→ π4(a) = µ .

(3.96)
The corresponding kernels are

I1 = {0} ,
I2 = K(H32⊕H42)⊗H21 ,
I3 = KH32⊕H42 ⊗ PH21 +K(H32⊕H42)⊗H21 + CPH42⊗H21 ,
I4 = CPH32⊗H21 +KH32⊕H42 ⊗ PH21 +K(H32⊕H42)⊗H21 .

(3.97)

The partial order given by the inclusions I1 ⊂ I2 ⊂ I3 and I1 ⊂ I2 ⊂ I4
produces a topological space PrimAY which is just the poset of Fig. (3.15).

In fact, by looking at the previous examples a bit more carefully one
can infer the algorithm by which one goes from a (finite) poset P to the
corresponding Bratteli diagram D(AP ). Let (x1, · · · , xN ) be the points of P
and for k = 1, · · · , N , let Sk =: {xk} be the smallest closed subset of P
containing the point xj . Then, the Bratteli diagram repeats itself after level
N and the partition Yn(k) of Proposition 20 is just given by

Yn(k) = Yn+1(k) = {xk} , k = 1, . . . , N , ∀ n ≥ N . (3.98)

As for the associated Fn(k) of the same Proposition, from level N + 1 on,
they are given by the Sk,

Fn(k) = Fn+1(k) = Sk , k = 1, . . . , N , ∀ n ≥ N + 1 . (3.99)
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In the diagram D(AP ), for any n ≥ N , (n, k) ↘ (n + 1, j) if and only if
{xk}

⋂
Sj 
= ∅, that is if and only if xk ∈ Sj .

We also sketch the algorithm used to construct the algebra limit AP de-
termined by the Bratteli diagram D(AP )14 [9, 73]. The idea is to associate
to the poset P an infinite dimensional separable Hilbert space H(P ) out of
tensor products and direct sums of infinite dimensional (separable) Hilbert
spaces Hij associated with each link (xi, xj), xi 3 xj , in the poset.15 Then
for each point x ∈ P there is a subspace H(x) ⊂ H(P ) and an algebra B(x)
of bounded operators acting on H(x). The algebra AP is the one generated
by all the B(x) as x varies in P . In fact, the algebra B(x) can be made to act
on the whole of H(P ) by defining its action on the complement of H(x) to be
zero. Consider any maximal chain Cα in P : Cα = {xα, . . . , x2, x1 | xj 3 xj−1}
for any maximal point xα ∈ P . To this chain one associates the Hilbert space

H(Cα) = Hα,α−1 ⊗ · · · ⊗ H3,2 ⊗H2,1 . (3.100)

By taking the direct sum over all maximal chains, one gets the Hilbert space
H(P ),

H(P ) =
⊕
α

H(Cα) . (3.101)

The subspace H(x) ⊂ H(P ) associated with any point x ∈ P is constructed
in a similar way by restricting the sum to all maximal chains containing the
point x. It can be split into two parts,

H(x) = H(x)u ⊗H(x)d , (3.102)

with,
H(x)u = H(Pu

x ) , Pu
x = {y ∈ P | y 4 x} ,

H(x)d = H(P d
x ) , P d

x = {y ∈ P | y % x} . (3.103)

Here H(Pu
x ) and H(P d

x ) are constructed as in (3.101); also, H(x)u = C if x
is a maximal point and H(x)d = C if x is a minimal point. Consider now the
algebra B(x) of bounded operators on H(x) given by

B(x) = K(H(x)u)⊗ CP(H(x)d) ' K(H(x)u)⊗ P(H(x)d) . (3.104)

As before, K denotes compact operators and P orthogonal projection. We see
that B(x) acts by compact operators on the Hilbert space H(x)u determined
by the points which follow x and by multiples of the identity on the Hilbert
spaceH(x)d determined by the points which precede x. These algebras satisfy
the rules: B(x)B(y) ⊂ B(x) if x % y and B(x)B(y) = 0 if x and y are not
comparable. As already mentioned, the algebra A(P ) of the poset P is the
algebra of bounded operators on H(P ) generated by all B(x) as x varies
14 This algebra is really defined only modulo Morita equivalence.
15 The Hilbert spaces could all be taken to be the same. The label is there just to

distinguish among them.
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over P . It can be shown that A(P ) has a space of primitive ideals which
is homeomorphic to the poset P [9, 73]. We refer to [72, 73] for additional
details and examples.

3.5 How to Recover the Algebra Being Approximated

In Sect. 3.3 we have described how to recover a topological space M in
the limit, by considering a sequence of finer and finer coverings of M . We
constructed a projective system of finitary topological spaces and continu-
ous maps {Pi, πij}i,j∈N associated with the coverings; the maps πij : Pj →
Pi , j ≥ i, being continuous surjections. The limit of the system is a topo-
logical space P∞, in which M is embedded as the subspace of closed points.
On each point m of (the image of) M there is a fiber of ‘extra points’; the
latter are all points of P∞ which ‘cannot be separated’ by m.

Well, from a dual point of view we get a inductive system of algebras and
homomorphisms {Ai, φij}i,j∈N; the maps φij : Ai → Aj , j ≥ i, being in-
jective homeomorphisms. The system has a unique inductive limit A∞. Each
algebra Ai is such that Âi = Pi and is associated with Pi as described previ-
ously, Ai = A(Pi). The map φij is a ‘suitable pullback’ of the corresponding
surjection πij . The limit space P∞ is the structure space of the limit algebra
A∞, P∞ = Â∞. And, finally the algebra C(M) of continuous functions on
M can be identified with the center of A∞.

We also get a inductive system of Hilbert spaces together with isometries
{Hi, τij}i,j∈N; the maps τij : Hi → Hj , j ≥ i, being injective isometries onto
the image. The system has a unique inductive limit H∞. Each Hilbert space
Hi is associated with the space Pi as in (3.101), Hi = H(Pi), the algebra
Ai being the corresponding subalgebra of bounded operators. The maps τij
are constructed out of the corresponding φij . The limit Hilbert space H∞ is
associated with the space P∞ as in (3.101), H∞ = H(P∞), the algebra A∞

again being the corresponding subalgebra of bounded operators. And, finally,
the Hilbert space L2(M) of square integrable functions is ‘contained’ in H∞

: H∞ = L2(M)⊕α Hα, the sum being on the ‘extra points’ in P∞.
All of the previous is described in great details in [12]. Here we only make

a few additional remarks. By improving the approximation (by increasing
the number of ‘detectors’) one gets a noncommutative lattice whose Hasse
diagram has a bigger number of points and links. The associated Hilbert
space gets ‘more refined’ : one may think of a unique (and the same) Hilbert
space which is being refined while being split by means of tensor products
and direct sums. In the limit the information is enough to recover completely
the Hilbert space (in fact, to recover more than it). Further considerations
along these lines and possible applications to quantum mechanics will have
to await another occasion.
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3.6 Operator Valued Functions
on Noncommutative Lattices

Much in the same way as it happens for the commutative algebras described
in Sect. 2.2, elements of a noncommutative C∗-algebra whose primitive spec-
trum PrimA is a noncommutative lattice can be realized as operator-valued
functions on PrimA. The value of a ∈ A at the ‘point’ I ∈ PrimA is just
the image of a under the representation πI associated with I and such that
ker(πI) = I,

a(I) = πI(a) ' a/I , ∀ a ∈ A, I ∈ PrimA . (3.105)

All this is shown pictorially in Figs. 3.17, 3.18 and 3.19 for the
∨
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Fig. 3.17. A function over the lattice
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λ µ

λP3,12 + k34,1 + µP4,12 λP3,12 + k34,2 + µP4,12

a = λP3,12 + k34,1 + k34,2 + µP4,12

Fig. 3.18. A function over the lattice P4(S1)

a circle lattice and the lattice Y of Fig. 3.15, respectively. As it is evident in
those Figures, the values of a function at points which cannot be separated
by the topology differ by a compact operator. This is an illustration of the
fact that compact operators play the rôle of ‘infinitesimals’ as we shall discuss
at length in Sect. 6.1. Furthermore, while in Figs. 3.17 and 3.18 we have only
‘infinitesimals of first order’, for the three level lattice of Fig. 3.19 we have
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λ µ

λP321 + k34,2 ⊗ P21 + µP421

λP321 + k34,2 ⊗ P21 + k34,21 + µP421

a = λP321 + k34,2 ⊗ P21 + k34,21 + µP421

Fig. 3.19. A function over the lattice Y

both infinitesimals of first order, like k34,2, and infinitesimals of second order,
like k34,21.

In fact, as we shall see in Sect. 4.2, the correct way of thinking of any
noncommutative C∗-algebra A is as the module of sections of the ‘rank one
trivial vector bundle’ over the associated noncommutative space. For the kind
of noncommutative lattices we are interested in, it is possible to explicitly
construct the bundle over the lattice. Such bundles are examples of bundles
of C∗-algebras [67], the fiber over any point I ∈ PrimA being just the
algebra of bounded operators πI(A) ⊂ B(HI), with HI the representation
space. The Hilbert space and the algebra are given explicitly by the Hilbert
space in (3.102) and the algebra in (3.104) respectively, by taking for x the
point I.16 It is also possible to endow the total space with a topology in such
a manner that elements of A are realized as continuous sections. Figure 3.20
shows the trivial bundle over the lattice P4(S1).

� �

� �
❅
❅
❅
❅
❅
❅

�
�
�
�
�
�

B(C) � C B(C) � C

CPH31⊕H32 ⊕KH31⊕H41 ⊕ CPH41⊕H42

CPH31⊕H32 ⊕KH31⊕H41 ⊕ CPH41⊕H42

Fig. 3.20. The fibers of the trivial bundle over the lattice P4(S1)

16 At the same time, one is also constructing a bundle of Hilbert spaces.
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The algebraic analogue of vector bundles has its origin in the fact that a
vector bundle E → M over a manifold M is completely characterized by
the space E = Γ (E,M) of its smooth sections. In this context, the space
of sections is thought of as a (right) module over the algebra C∞(M) of
smooth functions over M . Indeed, by the Serre-Swan theorem [143], locally
trivial, finite-dimensional complex vector bundles over a compact Hausdorff
space M correspond canonically to finite projective modules over the algebra
A = C∞(M).1 To the vector bundle E one associates the C∞(M)-module
E = Γ (M,E) of smooth sections of E. Conversely, if E is a finite projective
module over C∞(M), the fiber Em of the associated bundle E over the point
m ∈M is

Em = E/EIm , (4.1)

where the ideal Im ⊂ C(M), corresponding to the point m ∈M , is given by

Im = ker{χm : C∞(M) → C | χm(f) = f(m)}
= {f ∈ C∞(M) | f(m) = 0} . (4.2)

However, given a noncommutative algebra A, playing the rôle of the alge-
bra of smooth functions on some noncommutative space, one has more than
one possibility for the analogue of a vector bundle. The possible relevant
categories seem to be the following ones [61],

1. left or right A-modules;
2. A-bimodules of a particular kind (see later);
3. modules over the center Z(A) of A.

We shall start by describing right (and left) projective modules of finite type
(or finite projective modules) over A. These classes of modules provide suit-
able substitutes for the analogue of complex vector bundles, although one
has to introduce additional structures in order to consider tensor products.
Hermitian vector bundles, namely bundles with a Hermitian structure, cor-
respond to projective modules of finite type E endowed with an A-valued
1 In fact, in [143] the correspondence is stated in the continuous category, meaning
for functions and sections which are continuous. However, it can be extended to
the smooth case, see [33].

G. Landi: LNPm 51, pp. 59–68, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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sesquilinear form. For A a C∗-algebra, the appropriate notion is that of
Hilbert module that we describe at length in App. A.3.

We start with some machinery from the theory of modules which we take
mainly from [21].

4.1 Modules

Definition 5. Suppose we are given an algebra A over (say) the complex
numbers C. A vector space E over C is also a right module over A if it
carries a right representation of A,

E × A � (η, a) �→ ηa ∈ E , η(ab) = (ηa)b ,
η(a+ b) = ηa+ ηb ,
(η + ξ)a = ηa+ ξa , (4.3)

for any η, ξ ∈ E and a, b ∈ A .

Definition 6. Given two right A-modules E and F , a morphism of E into F
is any linear map ρ : E → F which in addition is A-linear,

ρ(ηa) = ρ(η)a , ∀ η ∈ E , a ∈ A . (4.4)

A left module and a morphism of left modules are defined in a similar way.
In general, a right module structure and a left module one should be taken
to be distinct.

A bimodule over the algebra A is a vector space E which carries both
a left and a right A-module structure. Furthermore, the two structures are
required to be compatible, namely

(aη)b = a(ηb) , ∀ η ∈ E , a, b ∈ A . (4.5)

Given a right A-module E , its dual E ′ is defined as the collection of all
morphisms from E into A,

E ′ = HomA(E ,A) =: {φ : E → A | φ(ηa) = φ(η)a , η ∈ E , a ∈ A} . (4.6)

By using the canonical bimodule structure of A, the collection E ′ is endowed
with a natural left A-module structure,

A× E ′ � (a, φ) �→ a · φ ∈ E ′ , a · φ(η) =: a(φ(η)) , (4.7)

for a ∈ A , φ ∈ E ′ , η ∈ E . Left analogues of the requirements (4.3) are easily
proven.
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For any algebra A, the opposite algebra Ao has elements ao in bijective
correspondence with the elements a ∈ A while multiplication is given by
aobo = (ba)o. Any right (respectively left) A-module E can be regarded as a
left (respectively right) Ao-module by setting aoη = ηa (respectively aη =
ηao), for any η ∈ E , a ∈ A. The algebra Ae =: A⊗CAo is called the enveloping
algebra of A. Any A-bimodule E can be regarded as a right Ae-module by
setting η(a⊗ bo) = bηa, for any η ∈ E , a ∈ A, bo ∈ Ao. One can also regard E
as a left Ae-module by setting (a⊗ bo)η = aηb, for any η ∈ E , a ∈ A, bo ∈ Ao.

If Z(A) is the center of A, one can define module structures exactly as
before with the rôle of A taken over by the commutative algebra Z(A). An
A-module structure produces a similar one over Z(A), but the converse is
clearly not true. Also, one should notice that in spite of the commutativity
of Z(A), a right Z(A)-module structure and a left Z(A)-module structure
should again be taken to be distinct.

A family (eλ)λ∈Λ, with Λ any (finite or infinite) directed set, is called a
generating family for the right module E if any element of E can be written
(possibly in more than one way) as a combination

∑
λ∈Λ eλaλ, with aλ ∈ A

and such that only a finite number of terms in the sum are different from
zero. The family (eλ)λ∈Λ is called free if it is made up of linearly independent
elements (over A), and it is a basis for the module E if it is a free gener-
ating family, so that any η ∈ E can be written uniquely as a combination∑

λ∈Λ eλaλ, with aλ ∈ A. The module is called free if it admits a basis.
The module E is said to be of finite type if it is finitely generated, namely if
it admits a generating family of finite cardinality.

Consider now the module CN ⊗C A =: AN . Any of its elements η can be
thought of as an N -dimensional vector with entries in A and can be written
uniquely as a linear combination η =

∑N
j=1 ejaj , with aj ∈ A and the ba-

sis {ej , j = 1, . . . , N} being identified with the canonical basis of CN . This
module is clearly both free and of finite type.
A general free module (of finite type) might admit bases of different cardi-
nality and so it does not make sense to talk of dimension. If the free module
is such that any two bases have the same cardinality, the latter is called the
dimension of the module.2

However, if the module E is of finite type there is always an integer N
and a (module) surjection ρ : AN → E . In this case one can find a ba-
sis {εj , j = 1, . . . , N} which is just the image of the free basis of AN ,
εj = ρ(ej) , j = 1, . . . , N . Notice that in general it is not possible to solve the
constraints among the basis elements so as to get a free basis. For example,
consider the algebra C∞(S2) of smooth functions on the two-dimensional
sphere S2 and the Lie algebra X (S2) of smooth vector fields on S2. Then,
2 A sufficient condition for this to happen is the existence of a (ring) homomor-
phism ρ : A → D, with D any field. This is, for instance, the case if A is
commutative (since then A admits at least a maximal ideal M and A/M is a
field) or if A may be written as a (ring) direct sum A = C⊕A [22].
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X (S2) is a module of finite type over C∞(S2), a basis of three elements be-
ing given by {Yi =

∑3
j,k=1 εijkxk

∂
∂xk

, i = 1, 2, 3} with x1, x2, x3, such that∑3
j (xj)2 = 1 (the xi’s are just the natural coordinates of S2). The basis is

not free, since
∑3

j=1 xjYj = 0; there do not exist two globally defined vector
fields on S2 which could serve as a basis of X (S2). Of course this is nothing
but the statement that the tangent bundle TS2 over S2 is non-trivial.

4.2 Projective Modules of Finite Type

Definition 7. A right A-module E is said to be projective if it satisfies one
of the following equivalent properties:

(1.) (Lifting property.) Given a surjective homomorphism ρ : M→N of right
A-modules, any homomorphism λ : E → N can be lifted to a homomor-
phism λ̃ : E →M such that ρ ◦ λ̃ = λ,

id : M ←→ M

λ̃ ↑ ↓ ρ

λ : E −→ N

↓

0

, ρ ◦ λ̃ = λ . (4.8)

(2.) Every surjective module morphism ρ : M→ E splits, namely there exists
a module morphism s : E →M such that ρ ◦ s = idE .

(3.) The module E is a direct summand of a free module, that is there exists
a free module F and a module E ′ (which will then be projective as well),
such that

F = E ⊕ E ′ . (4.9)

To prove that (1.) implies (2.) it is enough to apply (1.) to the case N = E ,
λ = idE , and identify λ̃ with the splitting map s. To prove that (2.) implies
(3.) one first observes that (2.) implies that E is a direct summand of M
through s, M = s(E) ⊕ kerρ. Also, as mentioned before, for any module E
it is possible to construct a surjection from a free module F , ρ : F → E (in
fact F = AN for some N). One then applies (2.) to this surjection. To prove
that (3.) implies (1.) one observes that a free module is projective and that
a direct sum of modules is projective if and only if any summand is.

Suppose now that E is both projective and of finite type with surjection
ρ : AN → E . Then, the projective properties of Definition 7 allow one to find
a lift λ̃ : E → AN such that ρ ◦ λ̃ = idE ,
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id : AN ←→ AN

λ̃ ↑ ↓ ρ

id : E −→ E

, ρ ◦ λ̃ = idE . (4.10)

We can then construct an idempotent p ∈ EndAAN ' MN (A), MN (A) being
the algebra of N ×N matrices with entries in A, given by

p = λ̃ ◦ ρ . (4.11)

Indeed, from (4.10), p2 = λ̃ ◦ ρ ◦ λ̃ ◦ ρ = λ̃ ◦ ρ = p. The idempotent p allows
one to decompose the free module AN as a direct sum of submodules,

AN = pAN ⊕ (1− p)AN (4.12)

and in this way ρ and λ̃ are isomorphisms (one the inverse of the other)
between E and pAN . The module E is then projective of finite type over A
if and only if there exits an idempotent p ∈ MN (A), p2 = p , such that
E = pAN . We may think of elements of E as N -dimensional column vectors
whose elements are inA, the collection of which are invariant under the action
of p,

E = {ξ = (ξ1, . . . , ξN ) ; ξi ∈ A , pξ = ξ} . (4.13)

In the what follows, we shall use the term finite projective to mean projective
of finite type.

The crucial link between finite projective modules and vector bundles
is provided by the following central result which is named after Serre and
Swan [143] (see also [152]). As mentioned before, the Serre-Swan theorem was
established for functions and sections which are continuous; it can however,
be extended to the smooth case [33].

Proposition 21. Let M be a compact finite dimensional manifold. A
C∞(M)-module E is isomorphic to a module Γ (E,M) of smooth sections
of a bundle E →M , if and only if it is finite projective.

Proof. We first prove that a module Γ (E,M) of sections is finite projective.
If E ' M × Ck is the rank k trivial vector bundle, then Γ (E,M) is just
the free module Ak, A being the algebra C∞(M). In general, from what was
said before, one has to construct two maps λ : Γ (E,M) → AN (this was
called λ̃ before), and ρ : AN → Γ (E,M), N being a suitable integer, such
that ρ ◦ λ = idΓ (E,M). Then Γ (E,M) = pAN , with the idempotent p given
by p = λ ◦ ρ. Let {Ui, i = 1, · · · , q} be an open covering of M . Any element
s ∈ Γ (E,M) can be represented by q smooth maps si = s|Ui

: Ui → Ck,
which satisfy the compatibility conditions

sj(m) =
∑
j

gji(m)si(m) , m ∈ Ui ∩ Uj , (4.14)
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with gji : Ui∩Uj → GL(k,C) the transition functions of the bundle. Consider
now a partition of unity {hi, , i = 1, · · · , q} subordinate to the covering {Ui}.
By a suitable rescaling we can always assume that h2

1 + · · ·+ h2
q = 1 so that

h2
j is a partition of unity subordinate to {Ui} as well. Now set N = kq, write

CN = Ck ⊕ · · · ⊕ Ck (q summands), and define

λ : Γ (E,M) → AN ,

λ(s1, · · · , sq) =: (h1s1, · · · , hqsq) ,

ρ : AN → Γ (E,M) ;

ρ(t1, · · · , tq) =: (t̃1, · · · , t̃q) , t̃i =
∑
j

gijhjtj . (4.15)

Then
ρ ◦ λ(s1, · · · , sq) = (s̃1, · · · , s̃q) , s̃i =

∑
j

gijh
2
jsj , (4.16)

which, since {h2
j} is a partition of unity, amounts to ρ ◦ λ = idΓ (E,M).

Conversely, suppose that E is a finite projective C∞(M)-module. Then,
with A = C∞(M), one can find an integer N and an idempotent p ∈ MN (A),
such that E = pAN . Now, AN can be identified with the module of sections
of the trivial bundle M × CN , AN ' Γ (M × CN ). Since p is a module map,
one has that p(sf) = p(s)f, f ∈ C∞(M). If m ∈ M and Im is the ideal
Im = {f ∈ C∞(M) | f(m) = 0}, then p preserves the submodule ANIm.
Since s �→ s(m) induces a linear isomorphism of AN/ANIm onto the fiber
(M×CN )m, we have that p(s)(m) ∈ (M×CN )m for all s ∈ AN . Then the map
π : M × CN →M × CN , s(m) �→ p(s)(m), defines a bundle homomorphism
satisfying p(s) = π ◦ s. Since p2 = p, one has that π2 = π. Suppose now
that dim π((M × CN )m) = k. Then one can find k linearly independent
smooth local sections sj ∈ AN , j = 1, · · · , k, near m ∈ M , such that
π ◦ sj(m) = sj(m). Then, π ◦ sj , j = 1, · · · , k are linearly independent in a
neighborhood U of m, so that dim π((M × CN )m′) ≥ k, for any m′ ∈ U .
Similarly, by considering the idempotent (1− π) : M × CN →M × CN , one
gets that dim (1 − π)((M × CN )m′) ≥ N − k, for any m′ ∈ U . The integer
N being constant, one infers that dim π((M × CN )m′) is (locally) constant,
so that π(M × CN ) is the total space of a vector bundle E → M which is
such that M × CN = E ⊕ kerπ. From the way the bundle E is constructed,
the module of its sections is given by Γ (E,M) = {π ◦ s | s ∈ Γ (M ×CN )} =
Im{p : AN → AN} = E .

If E is a (complex) vector bundle over a compact manifoldM of dimension
n, there exists a finite cover {Ui , i = 1, · · · , n} of M such that E|Ui

is trivial
[95]. Thus, the integer N which determines the rank of the trivial bundle,
from whose sections one projects onto the sections of the bundle E →M , is
determined by the equality N = kn where k is the rank of the bundle E →M
and n is the dimension of M .
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4.3 Hermitian Structures over Projective Modules

Suppose the vector bundle E → M is also endowed with a Hermitian struc-
ture. Then, the Hermitian inner product 〈·, ·〉m on each fiber Em of the bundle
gives a C∞(M)-valued sesquilinear map on the module Γ (E,M) of smooth
sections,

〈·, ·〉 : E × E → C∞(M) ,
〈η1, η2〉 (m) =: 〈η1(m), η2(m)〉m , ∀ η1, η2 ∈ Γ (E,M) . (4.17)

For any η1, η2 ∈ Γ (E,M) and a, b ∈ C∞(M), the map (4.17) is easily seen
to satisfy the following properties,

〈η1a, η2b〉 = a∗ 〈η1, η2〉 b , (4.18)
〈η1, η2〉∗ = 〈η2, η1〉 , (4.19)
〈η, η〉 ≥ 0 , 〈η, η〉 = 0 ⇔ η = 0 . (4.20)

Suppose now that we have a (finite projective right) module E over an
algebra A with involution ∗. Then, equations (4.19)-(4.20) are just the defi-
nition of a Hermitian structure over E , a module being called Hermitian if it
admits a Hermitian structure. We recall that an element a ∈ A is said to be
positive if it can be written in the form a = b∗b for some b ∈ A.
A condition for non degeneracy of a Hermitian structure is expressed in terms
of the dual module

E ′ = {φ : E → A | φ(ηa) = φ(η)a , η ∈ E , a ∈ A} , (4.21)

to which, A being a ∗-algebra, we give a right A-module structure as follows,

E ′ ×A � (φ, a) �→ φ · a =: a∗ · φ ∈ E ′ , (φ · a)(η) =: a∗(φ(η)) , (4.22)

for a ∈ A , φ ∈ E ′ , η ∈ E . Notice that the previous structure is different
from the left structure we have defined on E ′ in (4.7) (we should indeed use
distinct notations, but in what follows we shall use only this right structure
over E ′!). A condition for non degeneracy could equivalently be defined in
terms of the left structure on E ′.

We have the following definition.

Definition 8. The Hermitian structure 〈·, ·〉 on the (right, finite projective)
A-module E is called non degenerate if the map

E → E ′ , η �→ 〈η, ·〉 , (4.23)

is an isomorphism.
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On the free module AN there is a canonical Hermitian structure given by

〈η, ξ〉 =
N∑
j=1

η∗j ξj , (4.24)

where η = (η1, · · · , ηN ) and ξ = (ξ1, · · · , ξN ) are any two elements of AN .
Under suitable regularity conditions on the algebraA all Hermitian structures
on a given finite projective module E over A are isomorphic to each other and
are obtained from the canonical structure (4.24) on AN by restriction. We
refer to [34] for additional considerations and details on this point. Moreover,
if E = pAN , then p is self-adjoint.3 Indeed we have the following proposition

Proposition 22. Hermitian finite projective modules are of the form pAN

with p a self-adjoint idempotent, p∗ = p, the ∗ operation being the composition
of the ∗ operation in the algebra A with the usual matrix transposition.

Proof. With respect to the canonical structure (4.24), one easily finds that
〈p∗ξ, η〉 = 〈ξ, pη〉 for any matrix p ∈ MN (A). Now suppose that p is an
idempotent and consider the module E = pAN . The orthogonal space

E⊥ =: {u ∈ AN | 〈u, η〉 = 0 , ∀ η ∈ E} (4.25)

is again a right A-module since 〈ua, η〉 = a∗ 〈u, η〉. If u ∈ AN and η ∈ E ,
then 〈(1− p∗)u, η〉 = 〈u, (1− p)η〉 = 0 which states that E⊥ = (1 − p∗)AN .
On the other hand, since AN = pAN ⊕ (1 − p)AN , the pairing 〈·, ·〉 on AN

gives a Hermitian structure on E = pAN if and only if this is an orthogonal
direct sum, that is, if and only if (1− p∗) = (1− p) or p = p∗.

4.4 The Algebra of Endomorphisms of a Module

Suppose we are given a Hermitian finite projective A-module E = pAN . The
algebra of endomorphisms of E is defined by

EndA(E) = {φ : E → E | φ(ηa) = φ(η)a , η ∈ E , a ∈ A} . (4.26)

It is clearly an algebra under composition. It also admits a natural involution
∗ : EndA(E) → EndA(E) determined by4

〈T ∗η, ξ〉 =: 〈η, T ξ〉 , ∀ T ∈ EndA(E) , η, ξ ∈ E . (4.27)
3 Self-adjoint idempotents are also called projectors.
4 We are being a bit sloppy here. An endomorphism of a module need not admit
an adjoint. For a detailed discussion we refer to App. A.3 and in particular to
Definition 29. In fact, one considers only endomorphisms admitting an adjoint
and EndA(E) denotes the algebra of all such endomorphisms.
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With this involution, there is an isomorphism

EndA(E) ' pMN (A)p , (4.28)

so that, elements of EndA(E) are matrices m ∈ MN (A) which commute with
the idempotent p, pm = mp.

The group U(E) of unitary endomorphisms of E is the subgroup of
EndA(E) given by

U(E) = {u ∈ EndA(E) | uu∗ = u∗u = I} . (4.29)

In particular, UN (A) =: U(AN ) = {u ∈ MN (A) | uu∗ = u∗u = I} . Also,
there is an isomorphism UN (C∞(M)) ' C∞(M,U(N)), with M a smooth
manifold and U(N) the usual N -dimensional unitary group. In general, if
E = pAN with p∗ = p, one finds that U(E) = pU(AN )p.

4.5 More Bimodules of Various Kinds

As alluded to before, there are situations in which one needs more than right
(or left) modules. We mention in particular the study of ‘linear connections’,
namely connections on the module of one-forms. As we shall see, the latter
carries a natural bimodule structure.

Here we briefly describe two relevant constructions which have been pro-
posed in [65]

Definition 9. Let E be a bimodule over the algebra A, with Z(A) denoting
the center of the latter. Then, E is called a central bimodule if it happens
that

zη = ηz , ∀ z ∈ Z(A) , η ∈ E . (4.30)

The previous definition just says that the inherited structure of a bimodule
over the center Z(A) is induced by a structure of Z(A)-module. Indeed, if
F is a right (say) module over a commutative algebra C, one can induce a
C-bimodule structure over F by defining a left action of C simply by

cη =: ηc , ∀ c ∈ C , η ∈ F . (4.31)

The commutativity of C implies that the requirement for a left structure is
met. Thus, a central bimodule over a commutative algebra, is just a module
with the induced bimodule structure. The category of central bimodules over
an algebra A is stable under the operation of taking tensor products over
Z(A) and a fortiori also over A.

Definition 10. Let E be a bimodule over the algebra A. Then, E is called
a diagonal bimodule if E is isomorphic (as a bimodule) to a sub-bimodule
of AI , with I = I(E) any set and A is equipped with its canonical bimodule
structure.
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A diagonal bimodule is central but the converse need not be true. A motiva-
tion for the previous definition is that if A is commutative, then a diagonal
bimodule is an A-module (with the induced bimodule structure) such that
the canonical map from E to its bi-dual E ′′ is injective. The category of di-
agonal bimodules over an algebra A is stable under the operation of taking
tensor products over A; indeed, if E ⊂ AI and F ⊂ AJ , then E⊗AF ⊂ AI×J .

Another situation where one needs to go beyond ‘bare’ modules is when
analyzing ‘real sections of a vector bundle’. A noncommutative analogue of
complexified vector bundles is provided by ∗-bimodules [66]

Definition 11. Let E be a bimodule over the ∗-algebra A. Then, E is a ∗-
bimodule if it has an antilinear involution E � η �→ η∗ ∈ E, such that

(aηb)∗ = b∗η∗a∗ , a, b ∈ A , η ∈ E . (4.32)

Given a ∗-bimodule E , the analogues of real sections are the ∗-invariant ele-
ments of E ,

Er =: {η ∈ E | η∗ = η} . (4.33)

We refer to [61, 65, 66] for additional details and further discussions.
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We have seen in the previous Section that the algebraic substitutes for bun-
dles (of a particular kind, at least) are projective modules of finite type over
an algebra A. The (algebraic) K-theory of A is the natural framework for
the analogue of bundle invariants. Indeed, both the notions of isomorphism
and of stable isomorphism have a meaning in the context of finite projective
(right) modules. The group K0(A) will be the group of (stable) isomorphism
classes of such modules.

In this Section we shall review some of the fundamentals of the K-theory
of C∗-algebras while referring to [153, 13] for more details. In particular, we
shall have AF algebras in mind.

5.1 The Group K0

Given a unital C∗-algebra A we denote by MN (A) ' MN (C) ⊗C A the C∗-
algebra of N ×N matrices with entries in A. Two projectors p, q ∈ MN (A)
are said to be equivalent (in the sense of Murray-von Neumann) if there exists
a matrix (a partial isometry1) u ∈ MN (A) such that p = u∗u and q = uu∗.
In order to be able to ‘add’ equivalence classes of projectors, one considers
all finite matrix algebras over A at the same time by considering M∞(A)
which is the non complete ∗-algebra obtained as the inductive limit of finite
matrices2,

M∞(A) =
∞⋃
n=1

Mn(A) ,

φ : Mn(A) → Mn+1(A) , a �→ φ(a) =
{
a 0
0 0

}
. (5.1)

Now, two projectors p, q ∈ M∞(A) are said to be equivalent, p ∼ q, when
there exists a u ∈ M∞(A) such that p = u∗u and q = uu∗. The set V (A) of
1 An element u in a ∗-algebra B is called a partial isometry if u∗u is a projector
(called the support projector). Then automatically uu∗ is a projector [153] (called
the range projector). If B is unital and u∗u = I, then u is called an isometry.

2 The completion of M∞(A) is K ⊗ A, with K the algebra of compact operators
on the Hilbert space l2. The algebra K ⊗A is also called the stabilization of A.

G. Landi: LNPm 51, pp. 69–81, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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equivalence classes [ · ] is made into an abelian semigroup by defining an
addition,

[p] + [q] =: [
{
p 0
0 q

}
] , ∀ [p], [q] ∈ V (A). (5.2)

The additive identity is just 0 =: [0].
The group K0(A) is the universal canonical group (also called the enveloping
or Grothendieck group) associated with the abelian semigroup V (A). It may
be defined as a collection of equivalence classes,

K0(A) =: V (A)× V (A)/ ∼ ,

([p], [q]) ∼ ([p′], [q′])
⇔ ∃ [r] ∈ V (A) s.t. [p] + [q′] + [r] = [p′] + [q] + [r] . (5.3)

It is straightforward to check reflexivity, symmetry and transitivity, the ex-
tra [r] in (5.3) being inserted just to get the latter property. Thus ∼ is an
equivalence relation. The presence of the extra [r] is the reason why one is
only classifying stable classes.
The addition in K0(A) is defined by

[([p], [q])] + [([p′], [q′])] =: [([p] + [p′], [q] + [q′])] , (5.4)

for any [([p], [q])], [([p′], [q′])] ∈ K0(A), and does not depend on the represen-
tatives. As for the neutral element, it is given by the class

0 = [([p], [p])] , (5.5)

for any [p] ∈ V (A). Indeed, all such elements are equivalent. Finally, the
inverse −[([p], [q])] of the class [([p], [q])] is given by the class

−[([p], [q])] =: [([q], [p])] , (5.6)

since,

[([p], [q])] + (−[([p], [q])]) = [([p], [q])] + ([([q], [p])]) = [([p] + [q], [p] + [q])] = 0 .
(5.7)

From all that has been previously said, it is clear that it is useful to think of
the class [([p], [q])] ∈ K0(A) as a formal difference [p]− [q].
There is a natural homomorphism

κA : V (A) → K0(A) , κA([p]) =: ([p], [0]) = [p]− [0] . (5.8)

However, this map is injective if and only if the addition in V (A) has cancel-
lations, namely if and only if [p]+[r] = [q]+[r] ⇒ [p] = [q]. Independently of
the fact that V (A) has cancellations, any κA([p]), [p] ∈ V (A), has an inverse
in K0(A) and any element of the latter group can be written as a difference
κA([p])− κA([q]), with [p], [q] ∈ V (A).
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While for a generic A, the semigroup V (A) has no cancellations, for AF
algebras this happens to be the case. By defining

K0+(A) =: κA(V (A)) , (5.9)

the couple (K0(A),K0+(A)) becomes, for an AF algebra A, an ordered group
with K0+(A) the positive cone, namely one has that

K0+(A) � 0 ,
K0+(A)−K0+(A) = K0(A) ,
K0+(A) ∩ (−K0+(A)) = 0 . (5.10)

For a generic algebra the last property is not true and, as a consequence, the
couple (K0(A),K0+(A)) is not an ordered group.

Example 12. The group K0(A) for A = C, A = Mk(C), k ∈ N

and A = Mk(C)⊕Mk′(C), k, k′ ∈ N.
If A = C, any element in V (A) is a class of equivalent projectors in some
Mn(C). Now, projectors in Mn(C) are equivalent precisely when their ranges,
which are subspaces of Cn, have the same dimension. Therefore we can make
the identification

V (C) ' N , (5.11)

with N = {0, 1, 2, · · ·} the semigroup of natural numbers.

As Mn(Mk(C)) ' Mnk(C), the same argument gives

V (Mk(C)) ' N . (5.12)

The canonical group associated with the semigroup N is just the group Z of
integers, and we have

K0(C) = Z , K0+(C) = N ,
K0(Mk(C)) = Z , K0+(Mk(C)) = N , ∀ k ∈ N .

(5.13)

For A = Mk(C) ⊕Mk′(C), the same argument for each of the two terms in
the direct sum will give

K0(Mk(C)⊕Mk′(C)) = Z⊕ Z , (5.14)
K0+(Mk(C)⊕Mk′(C)) = N⊕ N , ∀ k, k′ ∈ N . (5.15)

In general, the groupK0 has a few interesting properties, notably universality.
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Proposition 23. Let G be an abelian group and Φ : V (A) → G be a homo-
morphism of semigroups such that Φ(V (A)) is invertible in G.
Then, Φ extends uniquely to a homomorphism Ψ : K0(A) → G,

Φ : V (A) −→ G

κA ↓ ↑ Ψ

id : K0(A) ←→ K0(A)

, Ψ ◦ κA = Φ . (5.16)

Proof. First uniqueness.
If Ψ1, Ψ2 : K0(A) → G both extend Φ, then Ψ1([([p], [q])]) = Ψ1([p] − [q]) =
Ψ1(κA([p])) − Ψ1(κA([q])) = Φ([p]) − Φ([q]) = Ψ2([([p], [q])]), which proves
uniqueness.
Then existence.
Define Ψ : K0(A) → G by Ψ([([p], [q])]) = Φ([p]) − Φ([q]). This map
is well defined because Φ([q]) has an inverse in G and because ([p], [q]) ∼
([p′], [q′]) ⇔ ∃ [r] ∈ V (A) such that [p] + [q′] + [r] = [p′] + [q] + [r], and this
in turn, implies Ψ([([p], [q])]) = Ψ([([p′], [q′])]). Finally, Ψ is a homomorphism
and Ψ(κA([p]) = Ψ([([p], [0])]) = Φ([p]), i.e. Ψ ◦ κA = Φ.

The group K0 is well behaved with respect to homomorphisms.3

Proposition 24. If α : A → B is a homomorphism of C∗-algebras, then the
induced map

α∗ : V (A) → V (B) , α∗([aij ]) =: [α(aij)] , (5.17)

is a well defined homomorphism of semigroups. Moreover, from universality,
α∗ extends to a group homomorphism (denoted by the same symbol)

α∗ = K0(A) → K0(B) . (5.18)

Proof. If the matrix (aij) ∈ M∞(A) is a projector, the matrix α(aij) will

clearly be a projector in M∞(B) since α is a homomorphism. Furthermore,
if (aij) is equivalent to (bij), then, since α is multiplicative and ∗-preserving,
α(aij) will be equivalent to α(bij). Thus α∗ : V (A) → V (B) is well defined
and clearly a homomorphism. The last statement follows from Proposition 23
with the identification Φ ≡ κB ◦ α∗ : V (A) → K0(B) so as to get for Ψ the
map Ψ ≡ α∗ : K0(A) → K0(B).

The group K0 is also well behaved with respect to the process of taking
inductive limits of C∗-algebras, as stated in the following proposition which
is proven in [153] and which is crucial for the calculation of the group K0 of
AF algebras.

3 In a more sophisticated parlance, K0 is a covariant functor from the category of
C∗-algebras to the category of abelian groups.
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Proposition 25. If the C∗-algebra A is the inductive limit of an inductive
system {Ai, Φij}i,j∈N of C∗-algebras4, then {K0(Ai), Φij∗}i,j∈N is an induc-
tive system of groups and one can exchange the limits,

K0(A) = K0(lim→ Ai) = lim→ K0(Ai) . (5.19)

Moreover, if A is an AF algebra, then K0(A) is an ordered group with the
positive cone given by the limit of an inductive system of semigroups

K0+(A) = K0+(lim→ Ai) = lim→ K0+(Ai) . (5.20)

One has that as sets,

K0(A) = {(kn)n∈N , kn ∈ K0(An) | ∃N0 , kn+1 = Tn(kn) , n > N0} ,
(5.21)

K0+(A) = {(kn)n∈N , kn ∈ K0+(An) | ∃N0 , kn+1 = Tn(kn) , n > N0} ,
(5.22)

while the (abelian) group/semigroup structure is inherited pointwise from the
addition in the groups/semigroups in the sequences (5.21), (5.22) respectively.

5.2 The K-Theory of the Penrose Tiling

The algebra APT of the Penrose Tiling is an AF algebra which is quite far
from being postliminal, since there are an infinite number of non equivalent
irreducible representations which are faithful. These have the same kernel,
namely {0}, which is the only primitive ideal (the algebra APT is indeed
simple). The construction of its K-theory is rather straightforward and quite
illuminating. The corresponding Bratteli diagram is shown in Fig. 5.1 [34].
From Props. (17) and (18) it is clear that {0} is the only primitive ideal.
At each level, the algebra is given by

An = Mdn(C)⊕Md′
n
(C) , n ≥ 1 , (5.23)

with inclusion

In : An ↪→ An+1 ,

{
A 0
0 B

}
�→


A 0 0
0 B 0
0 0 A


 , (5.24)

for any A ∈ Mdn(C) , B ∈ Md′
n
(C). This gives for the dimensions the follow-

ing recursive relations,
4 In fact, one could substitute N with any directed set Λ.
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Fig. 5.1. The Bratteli diagram for the algebra APT of the Penrose tiling

dn+1 = dn + d′n ,
d′n+1 = dn ,

n ≥ 1 , d1 = d′1 = 1 . (5.25)

From what we said in Example 12, after the second level, the K-groups
are given by

K0(An) = Z⊕ Z , K0+(An) = N⊕ N , n ≥ 1. (5.26)

The group (K0(A),K0+(A)) is obtained, by Proposition 25, as the induc-
tive limit of the sequence of groups/semigroups

K0(A1) ↪→ K0(A2) ↪→ K0(A3) ↪→ · · · (5.27)
K0+(A1) ↪→ K0+(A2) ↪→ K0+(A3) ↪→ · · · (5.28)

The inclusions

Tn : K0(An) ↪→ K0(An+1) , Tn : K0+(An) ↪→ K0+(An+1) , (5.29)

are easily obtained from the inclusions In in (5.24), being indeed the corre-
sponding induced maps as in (5.18) Tn = In∗. To construct the maps Tn we
need the following proposition, the first part of which is just Proposition 15
which we repeat here for clarity.

Proposition 26. Let A and B be the direct sum of two matrix algebras,

A = Mp1(C)⊕Mp2(C) , B = Mq1(C)⊕Mq2(C) . (5.30)
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Then, any (unital) homomorphism α : A → B can be written as the direct
sum of the representations αj : A → Mqj (C) ' B(Cqj ), j = 1, 2. If πji
is the unique irreducible representation of Mpi(C) in B(Cqj ), then αj breaks
into a direct sum of the πji. Furthermore, let Nji be the non-negative integers
denoting the multiplicity of πji in this sum. Then the induced homomorphism,
α∗ = K0(A) → K0(B), is given by the 2× 2 matrix (Nij).

Proof. For the first part just refer to Proposition 15.
Furthermore, given a rank k projector in Mpi

(C), the representation αj sends
it to a rank Njik projector in Mqj

(C). This proves the final statement of the
proposition.

For the inclusion (26), Proposition 26 gives immediately that the maps
(5.29) are both represented by the integer valued matrix

T =
{

1 1
1 0

}
, (5.31)

for any level n. The action of the matrix (5.31) can be represented pictorially
as in Fig. 5.2 where the couples (a, b), (a′, b′) are both in Z⊕ Z or N⊕ N.

�
�

�
�

❍❍❍❍❍❍✟✟
✟✟

✟✟
a

a′

b

b′

⇒
{

a′ = a+ b
b′ = a

Fig. 5.2. The action of the inclusion T

Finally, we can construct the K0 group.

Proposition 27. The group (K0(APT ),K0+(APT )) for the C∗-algebra APT

of the Penrose tiling is given by

K0(APT ) = Z⊕ Z , (5.32)

K0+(APT ) = {(a, b) ∈ Z⊕ Z :
1 +

√
5

2
a+ b ≥ 0} . (5.33)

Proof. The result (5.32) follows immediately from the fact that the matrix T

in (5.31) is invertible over the integers, its inverse being

T−1 =
{

0 1
1 −1

}
. (5.34)
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Now, from the definition of inductive limit we have that,

K0(APT ) = {(kn)n∈N , kn ∈ K0(An) | ∃N0 , kn+1 = T (kn) , n > N0}.
(5.35)

Since T is a bijection, for any kn+1 ∈ K0(An+1), there exists a unique
kn ∈ K0(An) such that kn+1 = Tkn. Thus, K0(APT ) = K0(An) = Z⊕ Z.

As for (5.33), since T is not invertible over N, K0+(APT ) 
= N ⊕ N. To
construct K0+(APT ), we study the image T (K0+(An)) in K0+(An+1). It is
easily found to be

T (K0+(An)) = {(an+1, bn+1) ∈ N⊕ N : an+1 ≥ bn+1}

= K0+(An+1) . (5.36)

Now, T being injective, T (K0+(An)) = T (N⊕ N) ' N⊕ N. The inclusion of
T (K0+(An)) into K0+(An+1) is shown in Fig. 5.3. By identifying the subset
T (K0+(An)) ⊂ K0+(An+1) withK0+(An), we can think of T−1(K0+(An+1))
as a subset of Z⊕Z and of T−1(K0+(An)) as the standard positive cone N⊕N.
The result is shown in Fig. 5.4. The next iteration, namely T−2(K0+(An)) is
shown in Fig. 5.5. From definition (5.22), by going to the limit we shall have
K0+(APT ) = limm→∞ T−m(N ⊕ N) and the limit will be a subset of Z ⊕ Z

since T is invertible only over Z. The limit can be easily found. From the
defining relation

Fm+1 = Fm + Fm−1, m ≥ 1 , (5.37)

for the Fibonacci numbers, with F0 = 0, F1 = 1, it follows that

T−m = (−1)m
{
Fm−1 −Fm
−Fm Fm+1

}
. (5.38)

Therefore, T−m takes the positive axis {(a, 0) : a ≥ 0} to a half-line of slope
−Fm/Fm−1, and the positive axis {(0, b) : b ≥ 0} to a half-line of slope
−Fm+1/Fm. Thus the positive cone N ⊕ N opens into a fan-shaped wedge
which is bordered by these two half-lines. Any integer coordinate point within
the wedge comes from an integer coordinate point in the original positive
cone. Since limm→∞ Fm+1/Fm = 1+

√
5

2 , the limit cone is just the half-space
{(a, b) ∈ Z⊕Z : 1+

√
5

2 a+b ≥ 0} . Every integer coordinate point in it belongs
to some intermediate wedge and so it lies in K0+(APT ). The latter is shown
in Fig. 5.6.

We refer to [72] for an extensive study of theK-theory of noncommutative
lattices and for several examples of K-groups.
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Fig. 5.6. The semigroup K0+(APT ) for the algebra of the Penrose tiling

5.3 Higher-Order K-Groups

In order to define higher order groups, one needs to introduce the notion of
suspension of a C∗-algebra A: it is the C∗-algebra

SA =: A ⊗ C0(R) ' C0(R → A) , (5.39)

where C0 indicates continuous functions vanishing at infinity. Also, in the
second object, sum and product are defined pointwise, adjoint is the adjoint
in A and the norm is the supremum norm ||f ||SA = supx∈R ||f(x)||A.

The K-group of order n of A is defined to be

Kn(A) =: K0(SnA) , n ∈ N . (5.40)

However, the Bott periodicity theorem asserts that all K-groups are isomor-
phic to either K0 or K1, so that there are really only two such groups. There
are indeed the following isomorphisms [153]
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K2n(A) ' K0(A) ,
K2n+1(A) ' K1(A) , ∀ n ∈ N . (5.41)

Again, AF algebras show characteristic features. Indeed, for them K1
vanishes identically.

While K-theory provides analogues of topological invariants for algebras,
cyclic cohomology provides analogues of differential geometric invariants. K-
theory and cohomology are connected by the noncommutative Chern char-
acter in a beautiful generalization of the usual (commutative) situation [34].
We regret that all this goes beyond the scope of the present notes.

As mentioned in Sect. 3.4.2, K-theory has been proven [70] to be a com-
plete invariant which distinguishes among AF algebras if one add to the
ordered group (K0(A),K0+(A)) the notion of scale, the latter being defined
for any C∗-algebra A as

ΣA =: {[p] , p a projector in A} . (5.42)

AF algebras are completely determined, up to isomorphism, by their scaled
ordered groups, namely by the triples (K0,K0+, Σ). The key to this is the fact
that scale preserving isomorphisms between the ordered groups (K0,K0+, Σ)
of two AF algebras are nothing but K-theoretically induced maps (5.18) of
isomorphisms between the AF algebras themselves.



6 The Spectral Calculus

In this section we shall introduce the machinery of spectral calculus which is
the noncommutative generalization of the usual calculus on a manifold. As
we shall see, a crucial rôle is played by the Dixmier trace.

6.1 Infinitesimals

Before we proceed to illustrate Connes’ theory of infinitesimals, we need a
few additional facts about compact operators which we take from [135, 139]
and state as propositions. The algebra of compact operators on the Hilbert
space H will be denoted by K(H) while B(H) will be the algebra of bounded
operators.

Proposition 28. Let T be a compact operator on H. Then, its spectrum σ(T )
is a discrete set having no limit points except perhaps λ = 0. Furthermore,
any nonzero λ ∈ σ(T ) is an eigenvalue of finite multiplicity.

Notice that a generic compact operator needs not admit any nonzero eigen-
value.

Proposition 29. Let T be a self-adjoint compact operator on H. Then, there
is a complete orthonormal basis, {φn}n∈N, for H of eigenvectors, so that
Tφn = λnφn and λn → 0 as n→∞.

Proposition 30. Let T be a compact operator on H. Then, it has a uniformly
convergent (i.e. convergent in norm) expansion

T =
∑
n≥0

µn(T ) |ψn〉 〈φn| , (6.1)

where, 0 ≤ µj+1 ≤ µj, and {ψn}n∈N, {φn}n∈N are (not necessarily complete)
orthonormal sets.

G. Landi: LNPm 51, pp. 83–103, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



84 6 The Spectral Calculus

In this proposition one writes the polar decomposition T = U |T |, with |T | =√
T ∗T . Then, {µn(T ), µn → 0 as n→∞} are the non vanishing eigenvalues of

the (compact self-adjoint) operator |T | arranged with repeated multiplicity;
{φn} are the corresponding eigenvectors and ψn = Uφn. The eigenvalues
{µn(T )} are called the characteristic values of T . One has that µ0(T ) = ||T ||,
the norm of T .

Due to condition (2.38), compact operators are in a sense ‘small’; they
play the rôle of infinitesimals. The size of the infinitesimal T ∈ K(H) is
governed by the rate of decay of the sequence {µn(T )} as n→∞.

Definition 12. For any α ∈ R+, the infinitesimals of order α are all T ∈
K(H) such that

µn(T ) = O(n−α) , as n→∞ ,

i.e. ∃ C <∞ : µn(T ) ≤ Cn−α , ∀ n ≥ 1 . (6.2)

Given any two compact operators T1 and T2, there is a submultiplicative
property [139]

µn+m(T1T2) ≤ µn(T1)µn(T2) , (6.3)

which, in turn, implies that the orders of infinitesimals behave well,

Tj of order αj ⇒ T1T2 of order ≤ α1 + α2 . (6.4)

Also, infinitesimals of order α form a (not closed) two-sided ideal in B(H),
since for any T ∈ K(H) and B ∈ B(H), one has that [139],

µn(TB) ≤ ||B|| µn(T ) ,
µn(BT ) ≤ ||B|| µn(T ) . (6.5)

6.2 The Dixmier Trace

As in ordinary differential calculus one looks for an ‘integral’ which neglects
all infinitesimals of order > 1. This is achieved here with the Dixmier trace
which is constructed in such a way that

1. Infinitesimals of order 1 are in the domain of the trace.
2. Infinitesimals of order higher than 1 have vanishing trace.

The usual trace is not appropriate. Its domain is the two-sided ideal L1 of
trace class operators. For any T ∈ L1, the trace, defined as

tr T =:
∑
n

〈Tξn, ξn〉 , (6.6)

is independent of the orthonormal basis {ξn}n∈N of H and is, indeed, the sum
of eigenvalues of T . When the latter is positive and compact, one has that



6.2 The Dixmier Trace 85

tr T =:
∞∑
0

µn(T ) . (6.7)

In general, an infinitesimal of order 1 is not in L1, since the only control
on its characteristic values is that µn(T ) ≤ C 1

n , for some positive constant
C. Moreover, L1 contains infinitesimals of order higher than 1. However, for
(positive) infinitesimals of order 1, the usual trace (6.7) is at most logarith-
mically divergent since

N−1∑
0

µn(T ) ≤ C lnN . (6.8)

The Dixmier trace is just a way to extract the coefficient of the logarithmic
divergence. It is somewhat surprising that this coefficient behaves as a trace
[56].

We shall indicate with L(1,∞) the ideal of compact operators which are
infinitesimal of order 1. If T ∈ L(1,∞) is positive, one tries to define a positive
functional by taking the limit of the cut-off sums,

lim
N→∞

1
lnN

N−1∑
0

µn(T ) . (6.9)

There are two problems with the previous formula: its linearity and its con-
vergence. For any compact operator T , consider the sums,

σN (T ) =
N−1∑

0

µn(T ) , γN (T ) =
σN (T )
lnN

. (6.10)

They satisfy [34],

σN (T1 + T2) ≤ σN (T1) + σN (T2) , ∀ T1, T2 ,

σ2N (T1 + T2) ≥ σN (T1) + σN (T2) , ∀ T1, T2 > 0 . (6.11)

In turn, for any two positive operators T1 and T2,

γN (T1 + T2) ≤ γN (T1) + γN (T2) ≤ γ2N (T1 + T2)(1 +
ln 2
lnN

) . (6.12)

From this, we see that linearity would follow from convergence. In general,
however, the sequence {γN}, although bounded, is not convergent. Notice
that, since the eigenvalues µn(T ) are unitary invariant, so is the sequence
{γN}. Therefore, one gets a unitary invariant positive trace on the positive
part of L(1,∞) for each linear form limω on the space Q∞(N) of bounded
sequences, satisfying the following conditions:

1. limω{γN} ≥ 0, if γN ≥ 0 .
2. limω{γN} = lim{γN}, if {γN} is convergent, with lim the usual limit.
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3. limω{γ1, γ1, γ2, γ2, γ3, γ3, · · ·} = limω{γN}.
3’. limω{γ2N} = limω{γN}. Scale invariance.

Dixmier proved that there exists an infinity of such scale invariant forms
[56, 34]. Associated with any one of them there is a trace, the Dixmier trace

trω(T ) = lim ω
1

lnN

N−1∑
0

µn(T ) , ∀ T ≥ 0 , T ∈ L(1,∞) . (6.13)

From (6.12), it also follows that trω is additive on positive operators,

trω(T1 + T2) = trω(T1) + trω(T2) , ∀ T1, T2 ≥ 0 , T1, T2 ∈ L(1,∞) . (6.14)

This, together with the fact that L(1,∞) is generated by its positive part (see
below), implies that trω extends by linearity to the entire L(1,∞) with the
properties,

1. trω(T ) ≥ 0 if T ≥ 0.
2. trω(λ1T1 + λ2T2) = λ1trω(T1) + λ2trω(T2).
3. trω(BT ) = trω(TB) , ∀ B ∈ B(H).
4. trω(T ) = 0 , if T is of order higher than 1.

Property 3. follows from (6.5). The last property follows from the fact that
the space of all infinitesimals of order higher than 1 forms a two-sided ideal
whose elements satisfy

µn(T ) = o(
1
n

) , i.e. nµn(T ) → 0 , as n→∞ . (6.15)

As a consequence, the corresponding sequence {γN} is convergent and con-
verges to zero. Therefore, for such operators the Dixmier trace vanishes.

To prove that L(1,∞) is generated by its positive part one can use a polar
decomposition and the fact that L(1,∞) is an ideal. If T ∈ L(1,∞), by consid-
ering the self-adjoint and anti self-adjoint parts separately one can suppose
that T is self-adjoint. Then, T = U |T | with |T | =

√
T 2 and U is a sign op-

erator, U2 = U ; from this |T | = UT and |T | ∈ L(1,∞). Furthermore, one has
the decomposition U = U+ − U− with U± = 1

2 (I ± U) its spectral projec-
tors (projectors on the eigenspaces with eigenvalue +1 and −1 respectively).
Therefore, T = U |T | = U+|T | −U−|T | = U+|T |U+−U−|T |U− is a difference
of two positive elements in L(1,∞).

In many examples of interest in physics, like Yang-Mills and gravity the-
ories, the sequence {γN} itself converges. In these cases, the limit is given by
(6.9) and does not depends on ω.
The following examples are mainly taken from [152].
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Example 13. Powers of the Laplacian on the n-dimensional flat torus Tn.
The operator

∆ = −(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

) , (6.16)

has eigenvalues ||lj ||2 where the lj’s are all points of the lattice Zn taken with
multiplicity one. Thus, |∆|s will have eigenvalues ||lj ||2s. For the correspond-
ing Dixmier trace, one needs to estimate (logN)−1∑N

1 ||lj ||2s as N → ∞.
Let NR be the number of lattice points in the ball of radius R centered at the
origin of Rn. Then NR ∼ vol{x | ||x|| ≤ R} and Nr−dr − Nr ∼ Ωnr

n−1dr.
Here Ωn = 2πn/2/Γ (n/2) is the area of the unit sphere Sn−1. Thus,

∑
||l||≤R

||l||2s ∼
∫ ∞

1
r2s(Nr−dr −Nr)

= Ωn

∫ ∞

1
r2s+n−1dr . (6.17)

On the other side, logNR ∼ nlogR. As R→∞, we have to distinguish three
cases.

For s > −n/2,
(logNR)−1

∑
||l||≤R

||l||2s → ∞ . (6.18)

For s < −n/2,
(logNR)−1

∑
||l||≤R

||l||2s → 0 . (6.19)

For s = −n/2,

(logNR)−1
∑

||l||≤R

||l||−n ∼ ΩnlogR

nlogR
=
Ωn

n
. (6.20)

Therefore, the sequence {γN (|∆|s)} diverges for s > −n/2, vanishes for s <
−n/2 and converges for s = −n/2. Thus ∆−n/2 is an infinitesimal of order
1, its trace being given by

trω(∆−n/2) =
Ωn

n
=

2πn/2

nΓ (n/2)
. (6.21)

Example 14. Powers of the Laplacian on the n-dimensional sphere Sn.
The Laplacian operator ∆ on Sn has eigenvalues l(l+n−1) with multiplicity

ml =
(
l + n
n

)
−
(
l + n− 2

n

)
=

(l + n− 1)!
(n− 1)!l!

(2l + n− 1)
(l + n− 1)

, (6.22)
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where l ∈ N; in particular m0 = 1,m1 = n + 1. One needs to estimate, as
N →∞, the following sums

log

N∑
l=0

ml ,

N∑
l=0

ml[l(l + n− 1)]−n/2 . (6.23)

One finds that
N∑
l=0

ml =
(
N + n
n

)
+
(
M + n− 1

n

)

=
1
n!

(N + n− 1)(N + n− 2) · · · (N + 1)(2N + n)

∼ 2Nn

n!
, (6.24)

from which,

log
N∑
l=0

ml ∼ logNn + log2− logn! ∼ nlogN . (6.25)

Furthermore,
N∑
l=0

ml[l(l + n− 1)]−n/2 =
1

(n− 1)!

N∑
l=0

(l + n− 1)!
l![l(l + n− 1)]n/2

(2l + n− 1)
(l + n− 1)

∼ 2
(n− 1)!

N∑
l=0

ln−1

[l(l + n− 1)]n/2

∼ 2
(n− 1)!

N∑
l=0

ln−1

(l + n−1
2 )n

∼ 2
(n− 1)!

N∑
l=0

(l +
n− 1

2
)−1

∼ 2
(n− 1)!

logN. (6.26)

By putting the numerator and the denominator together we finally get,

trω(∆−n/2) = limN→∞(
N∑
l=0

ml[l(l + n− 1)]−n/2/log

N∑
l=0

ml)

= limN→∞
2logN/(n− 1)!

nlogN
=

2
n!
. (6.27)

If one replaces the exponent −n/2 by a smaller s, the series in (6.26) becomes
convergent and the Dixmier trace vanishes. On the other end, if s > n/2, this
series diverges faster than the one in the denominator and the corresponding
quotient diverges.
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Example 15. The inverse of the harmonic oscillator.
The Hamiltonian of the one dimensional harmonic oscillator is given (in
‘momentum space’) by H = 1

2 (ξ2 + x2). It is well known that on the Hilbert
space L2(R) its eigenvalues are µn(H) = n + 1

2 , n = 0, 1, . . ., while its
inverse H−1 = 2(ξ2 +x2)−1 has eigenvalues µn(H−1) = 2

2n+1 . The sequence
{γN (H−1)} converges and the corresponding Dixmier trace is given by (6.9),

trω(H−1) = lim
N→∞

1
lnN

N−1∑
0

µn(H−1) = lim
N→∞

1
lnN

N−1∑
0

2
2n+ 1

= 1 . (6.28)

6.3 Wodzicki Residue and Connes’ Trace Theorem

The Wodzicki(-Adler-Manin-Guillemin) residue [156] is the unique trace on
the algebra of pseudodifferential operators of any order which, on operators
of order at most −n coincides with the corresponding Dixmier trace. Pseudo-
differential operators are briefly described in App. A.6. In this section we
shall introduce the residue and the theorem by Connes [32] which establishes
its connection with the Dixmier trace.

Definition 13. Let M be an n-dimensional compact Riemannian manifold.
Let T be a pseudodifferential operator of order −n acting on sections of a
complex vector bundle E →M . Its Wodzicki residue is defined by

ResWT =:
1

n(2π)n

∫
S∗M

trE σ−n(T )dµ . (6.29)

Here, σ−n(T ) is the principal symbol: a matrix-valued function on T ∗M which
is homogeneous of degree −n in the fibre coordinates (see App. A.6). The
integral is taken over the unit co-sphere

S∗M = {(x, ξ) ∈ T ∗M | ||ξ|| = 1} ⊂ T ∗M , (6.30)

with measure dµ = dxdξ. The trace trE is a matrix trace over ‘internal
indices’.1

Example 16. Powers of the Laplacian on the n-dimensional flat torus Tn.
The Laplacian ∆ is a second order operator. Then, the operator ∆−n/2 is of
order −n with principal symbol σ−n(∆−n/2) = ||ξ||−n (see App. A.6), which
is the constant function 1 on S∗Tn. As a consequence,
1 It may be worth mentioning that most authors do not include the factor 1

n
in

the definition of the residue (6.29).
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ResW∆
−n/2 =

1
n(2π)n

∫
S∗Tn

dxdξ

=
1

n(2π)n
Ωn

∫
Tn

dx

=
2πn/2

nΓ (n/2)
. (6.31)

The result coincides with the one given by the Dixmier trace in Example 13.

Example 17. Powers of the Laplacian on the n-dimensional sphere Sn.
Again the operator ∆−n/2 is of order −n with principal symbol the constant
function 1 on S∗Sn. Thus,

ResW∆
−n/2 =

1
n(2π)n

∫
S∗Sn

dxdξ

=
1

n(2π)n
Ωn

∫
Sn

dx

=
1

n(2π)n
ΩnΩn+1

=
2πn/2

nΓ (n/2)
=

2
n!
, (6.32)

where we have used the formula Γ (n2 )Γ (n+1
2 ) = 2−n+1π1/2(n− 1)!. Again we

see that the result coincides with the one in Example 14 obtained by taking
the Dixmier trace.

Example 18. The inverse of the one dimensional harmonic oscillator.
The Hamiltonian is given by H = 1

2 (ξ2 + x2). Let us forget for the moment
the fact that the manifold we are considering, M = R, is not compact. We
would like to still make sense of the (Wodzicki) residue of a suitable negative
power of H. Since H is of order 2, the first candidate would be H−1/2. From
(A.84) its principal symbol is the function ξ−1. Formula (6.29) would give
ResWH

−1/2 = ∞, a manifestation of the fact that R is not compact. On the
other hand, Example 15 would suggest we try H−1. But from (A.84) we see
that the symbol of H−1 has no term of order −1 ! It is somewhat surprising
that the integral of the full symbol of H−1 gives an answer which coincides
(up to a factor 2) with trω(H−1) evaluated in Example 15,

Residue(H−1) =
1

2π

∫
S∗R

σ(H−1) =
1
π

∫
R

2
1 + x2 dx = 2 . (6.33)

For an explanation of the previous fact we refer to [74].
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As we have already mentioned, Wodzicki [156] has extended the formula
(6.29) to a unique trace on the algebra of pseudodifferential operator of any
order. The trace of any operator T is given by the right hand side of formula
(6.29), with σ−n(T ) the symbol of order −n of T . In particular, one puts
ResWT = 0 if the order of T is less than −n. For additional material we refer
to [98, 75].

In the examples worked out above we have explicitly seen that the Dixmier
trace of an operator of a suitable type coincides with the Wodzicki residue
of the operator. That the residue coincides with the Dixmier trace for any
pseudodifferential operators of order less or equal that −n has been shown
by Connes [32, 34] (see also [152]).

Proposition 31. LetM be an n dimensional compact Riemannian manifold.
Let T be a pseudodifferential operator of order −n acting on sections of a
complex vector bundle E →M .
Then,

1. The corresponding operator T on the Hilbert space H = L2(M,E) of
square integrable sections, belongs to L(1,∞).

2. The trace trωT does not depend on ω and coincides with the residue,

trωT = ResWT =:
1

n(2π)n

∫
S∗M

trE(σ−n(T ))dµ . (6.34)

3. The trace depends only on the conformal class of the metric on M .

Proof. The Hilbert space on which T acts is just H = L2(M,E), the space
of square-integrable sections obtained as the completion of Γ (M,E) with re-
spect to the scalar product (u1, u2) =

∫
M
u∗1u2dµ(g) , dµ(g) being the mea-

sure associated with the Riemannian metric on M . If H1,H2 are obtained
from two conformally related metrics, the identity operator on Γ (M,E) ex-
tends to a linear map U : H1 → H2 which is bounded with bounded inverse
and which transforms T into UTU−1. Since trω(UTU−1) = trω(T ), we get
L(1,∞)(H1) ' L(1,∞)(H2) and the Dixmier trace does not change. On the
other side, the cosphere bundle S∗M is constructed by using a metric. But
since σ−n(T ) is homogeneous of degree −n in the fibre variable ξ, the multi-
plicative term obtained by changing variables just compensates the Jacobian
of the transformation. Thus the integral in the definition of the Wodzicki
residue remains the same in each conformal class.
Now, as we shall see in App. A.6, any operator T can be written as a finite
sum of operators of the form u �→ φTψ, with φ, ψ belonging to a partition of
unity of M . Since multiplication operators are bounded on the Hilbert space
H, the operator T will be in L(1,∞) if and only if all operators φTψ are.
Thus one can assume that E is the trivial bundle and M can be taken to
be a given n-dimensional compact manifold, M = Sn for simplicity. Now, it
turns out that the operator T can be written as T = S(1 +∆)−n/2, with ∆
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the Laplacian and S a bounded operator. From Example 14, we know that
(1 +∆)−n/2 ∈ L(1,∞), (the presence of the identity is irrelevant since it pro-
duces only terms of lower degree), and this implies that T ∈ L(1,∞). From
that example, we also have that for s < −n/2, the Dixmier trace of (1 +∆)s

vanishes and this implies that any pseudodifferential operator on M of order
s < −n/2 has vanishing Dixmier trace. In particular, the operator of order
(−n− 1) whose symbol is σ(x, ξ)−σ−n(x, ξ) has vanishing Dixmier trace; as
a consequence, the Dixmier trace of T depends only on the principal symbol
of T .
Now, the space of all trE(σ−n(T )) can be identified with C∞(S∗M). Further-
more, the map trE(σ−n(T )) �→ trω(T ) is a continuous linear form, namely
a distribution, on the compact manifold S∗M . This distribution is positive
due to the fact that the Dixmier trace is a positive linear functional and non-
negative principal symbols correspond to positive operators. Since a positive
distribution is a measure dm, we can write trω(T ) =

∫
S∗M σ−n(T )dm(x, ξ).

Now, an isometry φ : Sn → Sn will transform the symbol σ−n(T )(x, ξ) to
σ−n(T )(φ(x), φ∗ξ), φ∗ being the transpose of the Jacobian of φ, and deter-
mines a unitary operator Uφ on H which transforms T to UφTU−1

φ . Since
trωT = trω(UφTU−1

φ ), the measure dm determined by trω is invariant under
all isometries of Sn. In particular one can take φ ∈ SO(n+ 1). But S∗Sn is a
homogeneous space for the action of SO(n+ 1) and any SO(n+ 1)-invariant
measure is proportional to the volume form on S∗Sn. Thus

trωT ∼ 1
n(2π)n

∫
S∗M

trE(σ−n(T ))dxdξ = ResWT . (6.35)

From Examples 14 and 17 we see that the proportionally constant is just 1.
This ends the proof of the proposition.

Finally, we mention that in general there is a class M of elements of L(1,∞)

for which the Dixmier trace does not depend on the functional ω. Such oper-
ators are called measurable and in all the relevant cases in noncommutative
geometry one deals with measurable operators. We refer to [34] for a charac-
terization of M. We only mention that in such situations, the Dixmier trace
can again be written as a residue. If T is a positive element in L(1,∞), its com-
plex power T s, s ∈ C, Re s > 1, makes sense and is a trace class operator.
Its trace

ζ(s) = tr T s =
∞∑
n=0

µn(T )s , (6.36)

is a holomorphic function on the half plane Re s > 1. Connes has proven that
for T a positive element in L(1,∞), the limit lims→1+(s − 1)ζ(s) = L exists
if and only if

trωT =: lim
N→∞

1
lnN

N−1∑
0

µn(T ) = L . (6.37)
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We see that if ζ(s) has a simple pole at s = 1 then, the corresponding residue
coincides with the Dixmier trace. This equality gives back Proposition 31 for
pseudodifferential operators of order at most −n on a compact manifold of
dimension n.

In Sect. 10.1 we shall describe the use of such general Wodzicki residues
in the construction of gravity theories in the framework of noncommutative
geometry. Here we only mention that the residue has found other applications
in physics. In [120] it has been used to compute the Schwinger terms for
current algebras, while in [69], in the context of zeta-function regularization,
it has been used to evaluate all residues of zeta functions ζ(s) and to evaluate
the multiplicative anomaly of regularized determinants of products of pseudo
differential operators.

6.4 Spectral Triples

We shall now illustrate the basic ingredient introduced by Connes to develop
the analogue of differential calculus for noncommutative algebras.

Definition 14. A spectral triple (A,H, D)2 is given by an involutive algebra
A of bounded operators on the Hilbert space H, together with a self-adjoint
operator D = D∗ on H with the following properties.

1. The resolvent (D − λ)−1, λ 
∈ R, is a compact operator on H ;
2. [D, a] =: Da− aD ∈ B(H), for any a ∈ A.
The triple is said to be even if there is a Z2 grading of H, namely an operator
Γ on H, Γ = Γ ∗, Γ 2 = 1, such that

ΓD +DΓ = 0 ,
Γa− aΓ = 0 , ∀ a ∈ A . (6.38)

If such a grading does not exist, the triple is said to be odd.

By the assumptions in Definition 14, the self-adjoint operator D has a real
discrete spectrum made of eigenvalues, i.e. the collection {λn} forms a discrete
subset of R, and each eigenvalue has finite multiplicity. Furthermore, |λn| →
∞ as n → ∞. Indeed, (D − λ)−1 being compact, has characteristic values
µn((D − λ)−1) → 0, from which |λn| = µn(|D|) →∞.

In general, one could ask that condition 2. of Definition 14 be satisfied
only for a dense subalgebra of A.
Various degrees of regularity of elements of A are defined using D and |D|.
The reason for the corresponding names will be evident in the next subsec-
tion where we shall consider the canonical triple associated with an ordinary
2 The couple (H, D) is also called a K-cycle over A.
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manifold. To start with, a ∈ A will be said to be Lipschitz if and only if the
commutator [D, a] is bounded. As mentioned before, in general this condition
selects a dense subalgebra of A. We recall that, if D ⊂ H denotes the (dense)
domain of D, the condition [D, a] ∈ B(H) can be expressed in one of the
following equivalent ways [20]:

1. The element a is in the domain of the derivation [D, · ] of B(H), which
is the generator of the 1-parameter group σs of automorphism of B(H)
given by

σs(T ) = eisDTe−isD , T ∈ B(H) . (6.39)

2. For any ϕ,ψ ∈ D, the sesquilinear form

q(ϕ,ψ) =: (Dϕ, aψ)H − (a∗ϕ,Dψ)H , (6.40)

is bounded on D ×D.
3. For any ϕ ∈ D one has that aϕ ∈ D and the commutator [D, a] is norm

bounded on D.

Furthermore, consider the derivation δ on B(H) defined by

δ(T ) = [|D|, T ] , T ∈ B(H) . (6.41)

It is the generator of the 1-parameter group αs of automorphism of B(H)
given by

αs(T ) = eis|D|Te−is|D| . (6.42)

Given the derivation δ, one defines the subalgebra Ak ⊂ A, with k ≥ 2, as
the one generated by elements a ∈ A such that both a and [D, a] are in the
domain of δk−1. One could also think of A0 as being just A and of A1 as
consisting of the Lipschitz elements. The element a ∈ A is said to be of class
C∞ if it belongs to

⋂
k∈N

Ak.
It is worth mentioning that higher order commutators with D cannot be
used to express higher order regularity conditions. As we shall see in the
next Section, in the commutative situation, while [D, f ] is a multiplicative
operator and therefore is bounded, [D, [D, f ]] is the sum of a multiplicative
operator and of a differential operator (see footnote on page 97) and therefore
it is not bounded. On the other hand, in the commutative framework δk is
bounded on both C∞ functions and forms.

In Sect. 7.3 the subalgebra A2 will play a crucial rôle in the definition of
a scalar product on noncommutative forms.

We end this Section by mentioning that, as will be evident from the next
Section, the spectral triples we are considering are really ‘Euclidean’ ones.
There are some attempts to construct spectral triples with ‘Minkowskian
signature’ [94, 86, 103]. We shall not use them in these notes.
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6.5 The Canonical Triple over a Manifold

The basic example of spectral triple is constructed by means of the Dirac
operator on a closed n-dimensional Riemannian spin3 manifold (M, g). The
corresponding spectral triple (A,H, D) will be called the canonical triple over
the manifold M . For its constituents one takes:

1. A = F(M) is the algebra of complex valued smooth functions on M .

2. H = L2(M,S) is the Hilbert space of square integrable sections of the
irreducible spinor bundle over M ; its rank being equal to 2[n/2].4 The
scalar product in L2(M,S) is the usual one of the measure dµ(g) associ-
ated with the metric g,

(ψ, φ) =
∫
dµ(g)ψ(x)φ(x), (6.43)

with bar indicating complex conjugation and scalar product in the spinor
space being the natural one in C2[n/2]

.

3. D is the Dirac operator associated with the Levi-Civita connection ω =
dxµωµ of the metric g.5

First of all, notice that the elements of the algebra A act as multiplicative
operators on H,

(fψ)(x) =: f(x)ψ(x) , ∀ f ∈ A , ψ ∈ H . (6.44)

Next, let (ea, a = 1, . . . , n) be an orthonormal basis of vector fields which
is related to the natural basis (∂µ, µ = 1, . . . , n) via the n-beins, with com-
ponents eµa , so that the components {gµν} and {ηab} of the curved and the
flat metrics respectively, are related by,

gµν = eµae
ν
bη

ab , ηab = eµae
ν
b gµν . (6.45)

From now on, the curved indices {µ} and the flat ones {a} will run from
1 to n and as usual we sum over repeated indices. Curved indices will be
lowered and raised by the curved metric g, while flat indices will be lowered
and raised by the flat metric η.

3 For much of what follows one could consider spinc manifolds. The obstruction for
a manifold to have a spinc structure is rather mild and much weaker than the ob-
struction to having a spin structure. For instance, any orientable four dimensional
manifold admits such a spinc structure [6]. Then, one should accordingly modify
the Dirac operator in (6.52) by adding a U(1) gauge connection A = dxµAµ.
The corresponding Hilbert space H has a beautiful interpretation as the space
of square integrable Pauli-Dirac spinors [78].

4 The symbol [k] indicates the integer part in k.
5 To simplify matters, the kernel of the Dirac operator D is assumed to be trivial.
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The coefficients (ω b
µa ) of the Levi-Civita (metric and torsion-free) connection

of the metric g, defined by ∇µea = ω b
µa eb, are the solutions of the equations

∂µe
a
ν − ∂νeaµ − ω a

µb e
b
ν + ω a

νb e
b
µ = 0 . (6.46)

Also, let C(M) be the Clifford bundle over M whose fiber at x ∈ M is
just the complexified Clifford algebra CliffC(T ∗

xM) and Γ (M,C(M)) be the
module of corresponding sections. We have an algebra morphism

γ : Γ (M,C(M)) → B(H) , (6.47)

defined by
γ(dxµ) =: γµ(x) = γaeµa , µ = 1, . . . , n , (6.48)

and extended as an algebra map and by requiring A-linearity.
The curved and flat gamma matrices {γµ(x)} and {γa}, which we take to be
Hermitian, obey the relations

γµ(x)γν(x) + γν(x)γµ(x) = −2g(dxµ, dxn) = −2gµν , µ, ν = 1, . . . , n ;
γaγb + γbγa = −2ηab , a, b = 1, . . . , n . (6.49)

The lift ∇S of the Levi-Civita connection to the bundle of spinors is then

∇S
µ = ∂µ + ωSµ = ∂µ +

1
4
ωµabγ

aγb . (6.50)

The Dirac operator, defined by

D = γ ◦ ∇S , (6.51)

can be written locally as

D = γ(dxµ)∇S
µ = γµ(x)(∂µ + ωSµ ) = γaeµa(∂µ + ωSµ ) . (6.52)

Finally, we mention the Lichnérowicz formula for the square of the Dirac
operator [11],

D2 = ∆S +
1
4
R . (6.53)

Here R is the scalar curvature of the metric and ∆S is the Laplacian operator
lifted to the bundle of spinors,

∆S = −gµν(∇S
µ∇S

ν − Γ ρ
µν∇S

ρ ) , (6.54)

with Γ ρ
µν the Christoffel symbols of the connection.

If the dimension n of M is even, the previous spectral triple is even. For
the grading operator one just takes the product of all flat gamma matrices,

Γ = γn+1 = in/2γ1 · · · γn , (6.55)
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which, since n is even, anticommutes with the Dirac operator,

ΓD +DΓ = 0 . (6.56)

Furthermore, the factor in/2 ensures that

Γ 2 = I , Γ ∗ = Γ . (6.57)

Proposition 32. Let (A,H, D) be the canonical triple over the manifold M
as defined above. Then

1. The space M is the structure space of the algebra A of continuous func-
tions on M , which is the norm closure of A.

2. The geodesic distance between any two points on M is given by

d(p, q) = sup
f∈A

{|f(p)− f(q)| | ||[D, f ]|| ≤ 1} , ∀ p, q ∈M . (6.58)

3. The Riemannian measure on M is given by∫
M

f = c(n) trω(f |D|−n) , ∀ f ∈ A ,

c(n) = 2(n−[n/2]−1)πn/2nΓ (
n

2
) . (6.59)

Proof. Statement 1. is just the Gel’fand-Naimark theorem illustrated in
Sect. 2.2. As for Statement 2., from the action (6.44) of A as multiplica-
tive operators on H, one finds that

[D, f ]ψ = (γµ∂µf)ψ , ∀ f ∈ A , (6.60)

and the commutator [D, f ] is a multiplicative operator as well6 ,

[D, f ] = γµ∂µf = γ(df) , ∀ f ∈ A . (6.61)

As a consequence, its norm is

||[D, f ]|| = sup|(γµ∂µf)(γν∂νf)∗|1/2 = sup|γµν∂µf∂νf∗|1/2 . (6.62)

Now, the right-hand side of (6.62) coincides with the Lipschitz norm of f [34]
which is given by

||f ||Lip =: sup
x�=y

|f(x)− f(y)|
dγ(x, y)

, (6.63)

6 One readily finds that [D, [D, f ]] = γµ∂µ(γν∂νf)+(γµγν−γνγµ)(∂νf)∂µ which,
being a sum of a multiplicative operator and a differential operator cannot be
bounded. This is the reason why higher commutators are not used for defining
higher order regularity conditions for functions (see Sect. 6.4).
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with dγ the usual geodesic distance on M , given by the usual formula,

dγ(x, y) = infγ{ length of paths γ from x to y } . (6.64)

Therefore, we have that

||[D, f ]|| = sup
x�=y

|f(x)− f(y)|
dγ(x, y)

. (6.65)

Now, the condition ||[D, f ]|| ≤ 1 in (6.58), automatically gives

d(p, q) ≤ dγ(p, q) . (6.66)

To invert the inequality sign, fix the point q and consider the function
fγ,q(x) = dγ(x, q). Then ||[D, fγ,q]|| ≤ 1, and in (6.58) this gives

d(p, q) ≥ |fγ,q(p)− fγ,q(q)| = dγ(p, q) , (6.67)

which, together with (6.66) proves Statement 2. As a very simple example,
consider M = R and D = d

dx . Then, the condition ||[D, f ]|| ≤ 1 is just
sup | dfdx | ≤ 1 and the sup is saturated by the functions f(x) = ±x + cost
which give the usual distance.

The proof of Statement 3. starts with the observation that the principal
symbol of the Dirac operator is γ(ξ), left multiplication by γ(ξ) on spinor
fields, and so D is a first-order elliptic operator (see App. A.6). Since any
f ∈ A acts as a bounded multiplicative operator, the operator f |D|−n is
pseudodifferential of order −n. Its principal symbol is σ−n(x, ξ) = f(x)||ξ||−n

which, on the co-sphere bundle ||ξ|| = 1, reduces to the matrix f(x)I2[n/2] ,
2[n/2] = dimSx, Sx being the fibre of S. From the trace theorem, Prop 31,
we get

trω(f |D|−n) =
1

n(2π)n

∫
S∗M

tr(f(x)I2[n/2])dxdξ

=
2[n/2]

n(2π)n
(
∫
Sn−1

dξ)
∫
M

f(x)dx

=
1
c(n)

∫
M

f . (6.68)

Here,
∫
Sn−1 dξ = 2πn/2/Γ (n/2) is the area of the unit sphere Sn−1. This

gives c(n) = 2(n−[n/2]−1)πn/2nΓ (n/2) and Statement 3. is proven.

It is worth mentioning that the geodesic distance (6.58) can also be recov-
ered from the Laplace operator ∇g associated with the Riemannian metric g
on M [77, 78]. One has that

d(p, q) = sup
f
{|f(p)− f(q)| | ||f∇f − 1

2
(∇f2 + f2∇)||

L2(M)
≤ 1} , (6.69)
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where L2(M) is the Hilbert space of square integrable functions on M . In-
deed, the operator f∇f − 1

2 (∇f2 + f2∇) is just the multiplicative operator
gµν∂µf∂νf . Thus, much of the usual differential geometry can be recovered
from the triple (C∞(M), L2(M),∇g), although it is technically much more
involved.

6.6 Distance and Integral for a Spectral Triple

Given a general spectral triple (A,H, D), there is an analogue of formula
(6.58) which gives a natural distance function on the space S(A) of states on
the C∗-algebra A (the norm closure of A). A state on A is any linear map
φ : A → C which is positive, i.e. φ(a∗a) > 0, and normalized, i.e. φ(I) = 1
(see also App. A.2). The distance function on S(A) is defined by

d(φ, χ) =: sup
a∈A

{|φ(a)− χ(a)| | ||[D, a]|| ≤ 1} , ∀ φ, χ ∈ S(A) . (6.70)

In order to define the analogue of the measure integral, one needs the addi-
tional notion of the dimension of a spectral triple.

Definition 15. A spectral triple (A,H, D) is said to be of dimension n > 0
(or n summable) if |D|−1 is an infinitesimal (in the sense of Definition 12)
of order 1

n or, equivalently, if |D|−n is an infinitesimal or order 1.

Having such a n-dimensional spectral triple, the integral of any a ∈ A is
defined by ∫

a =:
1
V
trωa|D|−n , (6.71)

where the constant V is determined by the behavior of the characteristic
values of |D|−n, namely, µj ≤ V j−1 for j → ∞. We see that the rôle of
the operator |D|−n is just to bring the bounded operator a into L(1,∞) so
that the Dixmier trace makes sense. By construction, the integral in (6.71)
is normalized,

∫
I =

1
V
trω|D|−n =

1
V

lim
N→∞

N−1∑
j=1

µj(|D|−n) = lim
N→∞

N−1∑
j=1

1
j

= 1 . (6.72)

The operator |D|−n is the analogue of the volume of the space.
In Sect. 7.3 it will be shown that the integral (6.71) is a non-negative (nor-
malized) trace on A, satisfying the following relations,∫

ab =
∫
ba , ∀ a, b ∈ A ,∫

a∗a ≥ 0 , ∀ a ∈ A . (6.73)
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For the canonical spectral triple over a manifold M , its dimension coin-
cides with the dimension of M . Indeed, the Weyl formula for the eigenvalues
gives for large j [83],

µj(|D|) ∼ 2π(
n

ΩnvolM
)1/nj1/n , (6.74)

n being the dimension of M .

6.7 A Two-Point Space

Consider a space made of two points Y = {1, 2}. The algebra A of continuous
functions is the direct sum A = C ⊕ C and any element f ∈ A is a couple
of complex numbers (f1, f2), with fi = f(i) the value of f at the point i. A
0-dimensional even spectral triple (A,H, D, Γ ) is constructed as follows. The
finite dimensional Hilbert space H is a direct sum H = H1⊕H2 and elements
of A act as diagonal matrices

A � f �→
[
f1IdimH1 0

0 f2IdimH2

]
∈ B(H) . (6.75)

We shall identify every element of A with its matrix representation.
The operatorD can be taken as a 2×2 off-diagonal matrix, since any diagonal
element would drop out of commutators with elements of A,

D =
[

0 M∗

M 0

]
, M ∈ Lin(H1,H2) . (6.76)

Finally, the grading operator Γ is given by

Γ =
[

IdimH1 0
0 −IdimH2

]
. (6.77)

With f ∈ A, one finds for the commutator

[D, f ] = (f2 − f1)
[

0 M∗

−M 0

]
, (6.78)

and, in turn, for its norm, ||[D, f ]|| = |f2−f1|λ with λ the largest eigenvalue of
the matrix |M | =

√
MM∗. Therefore, the noncommutative distance between

the two points of the space is found to be

d(1, 2) = sup{|f2 − f1| | ||[D, f ]|| ≤ 1} =
1
λ
. (6.79)

For the previous triple the Dixmier trace is just (a multiple of the) usual
matrix trace.
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6.8 Real Spectral Triples

In fact, one needs to introduce an additional notion: the real structure one.
The latter is essential to introduce Poincaré duality and plays a crucial rôle
in the derivation of the Lagrangian of the Standard Model [35, 38, 37]. This
real structure may be thought of as a generalized CPT operator (in fact only
CP, since we are taking Euclidean signature).

Definition 16. Let (A,H, D) be a spectral triple of dimension n. A real
structure is an antilinear isometry J : H → H, with the properties
1a. J2 = ε(n)I ,
1b. JD = ε′(n)DJ ,
1c. JΓ = (i)nΓJ ; if n is even with Γ the Z2-grading.
2a. [a, b0] = 0 ,
2b. [[D, a], b0] = 0 , b0 = Jb∗J∗ , for any a, b ∈ A .

The mod 8 periodic functions ε(n) and ε′(n) are given by [35]

ε(n) = (1, 1,−1,−1,−1,−1, 1, 1) ,
ε′(n) = (1,−1, 1, 1, 1,−1, 1, 1) , (6.80)

n being the dimension of the triple. The previous periodicity is a manifesta-
tion of the so called ‘spinorial chessboard’ [24].

A full analysis of the previous conditions goes beyond the scope of these
notes. We only mention that 2a. is used by Connes to formulate Poincaré
duality and to define noncommutative manifolds. The map J is related to
the Tomita(-Takesaki) involution. The Tomita theorem states that for any
weakly closed7 ∗-algebra of operators M on a Hilbert space H which admits
a cyclic and separating vector8, there exists a canonical antilinear isometric
involution J : H → H which conjugates M to its commutant

M′ =: {T ∈ B(H) | Ta = aT , ∀ a ∈M} , (6.81)

i.e. JMJ∗ = M′. As a consequence, M is anti-isomorphic to M′, the anti-
isomorphism being given by the map M � a �→ Ja∗J∗ ∈ M′. The existence
of the map J satisfying condition 2a. also turns the Hilbert space H into a
bimodule over A, the bimodule structure being given by

a ξ b =: aJb∗J∗ ξ , ∀ a, b ∈ A . (6.82)
7 We recall that the sequence {Tλ}λ∈Λ is said to converge weakly to T , Tλ → T , if
and only if, for any ξ, η ∈ H, 〈(Tλ − T )ξ, η〉 → 0.

8 IfM is an involutive subalgebra of B(H), a vector ξ ∈ H is called cyclic forM if
Mξ is dense in H. It is called separating forM if for any T ∈M, Tξ = 0 implies
T = 0. One finds that a cyclic vector forM is separating for the commutantM′.
IfM is a von Neumann algebra (M =M′′), the converse is also true, namely a
cyclic vector forM′ is separating forM [55].
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As for condition 2b., for the time being, it may be thought of as the statement
that D is a ‘generalized differential operator’ of order 1. As we shall see, it
will play a crucial rôle in the spectral geometry described in Sect. 9.3. It is
worth stressing that, since a and b0 commute by condition 2a., condition 2b.
is symmetric, namely it is equivalent to the condition [[D, b0], a] = 0, for any
a, b ∈ A.
If a ∈ A acts on H as a left multiplication operator, then Ja∗J∗ is the cor-
responding right multiplication operator. For commutative algebras, these
actions can be identified and one simply writes a = Ja∗J∗. Then, condition
2b. reads [[D, a], b] = 0, for any a, b ∈ A, which is just the statement that D
is a differential operator of order 1.

The canonical triple associated with any (Riemannian spin) manifold in
Sect. 6.5, has a canonical real structure in the sense of Definition 16, the
antilinear isometry J being given by

Jψ =: Cψ , ∀ ψ ∈ H , (6.83)

where C is the charge conjugation operator and the bar indicates complex
conjugation [24]. One verifies that all defining properties of J hold true.

It turns out [84] that for the two point space described in Sect. 6.7, and
for more general discrete spaces as well, it is not possible to introduce a real
structure which fulfills all the requirements of Definition 16. More precisely,
it seems that it is not possible to satisfy the first order condition 2b. in the
definition.

6.9 Products and Equivalence of Spectral Triples

We shall briefly mention two additional concepts which are useful in general
and in particular in the description of the Standard Model. These are the
notions of product and equivalence of triples.

Suppose we have two spectral triples (A1,H1, D1, Γ1) and (A2,H2, D2)
the first one taken to be even with Z2-grading Γ1 on H1. The product triple
is the triple (A,H, D) given by

A =: A1 ⊗C A2 ,

H =: H1 ⊗C H2 ,

D =: D1 ⊗C I + Γ1 ⊗C D2 . (6.84)

From the definition ofD and the fact thatD1 anticommutes with Γ1 it follows
that
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D2 =
1
2
{D,D}

= (D1)2 ⊗C I + (Γ1)2 ⊗C (D2)2 +
1
2
{D1, Γ1} ⊗C D2

= (D1)2 ⊗C I + I⊗C (D2)2 . (6.85)

Thus, the dimensions sum up, namely, if Dj is of dimension nj , that is |Dj |−1

is an infinitesimal of order 1/nj , j = 1, 2, then D is of dimension n1 + n2,
that is |D|−1 is an infinitesimal of order 1/(n1 + n2). Furthermore, once the
limiting procedure Limω is fixed, one has also that [34],

Γ (n/2 + 1)
Γ (n1/2 + 1)Γ (n2/2 + 1)

trω(T1 ⊗ T2|D|n) = trω(T1|D|n1)trω(T2|D|n2) ,

(6.86)
for any Tj ∈ B(Hj). For the particular case in which one of the triples, the
second one, say, is zero dimensional so that the Dixmier trace is the ordinary
trace, the corresponding formula reads

trω(T1 ⊗ T2|D|n) = trω(T1|D|n1)tr(T2) . (6.87)

The product of real structures J1 and J2 needs some care. If the second
triple is of dimension 0 mod 8 one takes [35],

J =: J1 ⊗C J2 . (6.88)

This is used, for instance, for the spectral triple of the standard model as
we shall discuss in Sect.9.2. If one of the triples is even, then definition 6.88
works in most cases; some caveats were pointed out in [150].

The notion of equivalence of triples is the expected one. Suppose we are
given two spectral triples (A1,H1, D1) and (A2,H2, D2), with the associated
representations πj : Aj → B(Hj) , j = 1, 2. Then, the triples are said to
be equivalent if there exists a unitary operator U : H1 → H2 such that
Uπ1(a)U∗ = π2(a) for any a ∈ A1, and UD1U

∗ = D2. If the two triples are
even with grading operators Γ1 and Γ2 respectively, one requires also that
UΓ1U

∗ = Γ2. And if the two triples are real with real structure J1 and J2
respectively, one requires also that UJ1U

∗ = J2.
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We shall now describe how to construct a differential algebra of forms out
of a spectral triple (A,H, D). It turns out to be useful to first introduce a
universal graded differential algebra which is associated with any algebra A.

7.1 Universal Differential Forms

Let A be an associative algebra with unit (for simplicity) over the field of
numbers C (say). The universal differential algebra of forms ΩA =

⊕
pΩ

pA
is a graded algebra defined as follows. In degree 0 it is equal to A, Ω0A = A.
The space Ω1A of one-forms is generated, as a left A-module, by symbols of
degree δa, for a ∈ A, with relations

δ(ab) = (δa)b+ aδb , ∀ a, b ∈ A . (7.1)
δ(αa+ βb) = αδa+ βδb , ∀ a, b ∈ A , α, β ∈ C . (7.2)

We shall assume that the element 1 ∈ C coincides with the unit of A (so that
C ⊂ A) and that 1 is also the unit of the whole of ΩA. Then, the relation
(7.1) automatically gives δ1 = 0, since δ1 = δ(1 ·1) = (δ1) ·1+1 ·(δ1) = 2(δ1)
from which it follows that δ1 = 0. In turn this implies that δC = 0.
A generic element ω ∈ Ω1A is a finite sum of the form

ω =
∑
i

aiδbi , ai, bi ∈ A . (7.3)

The left A-module Ω1A can also be endowed with a structure of a right
A-module by

(
∑
i

aiδbi)c =:
∑
i

ai(δbi)c =
∑
i

aiδ(bic)−
∑
i

aibiδc , (7.4)

where, in the second equality, we have used (7.1). The relation (7.1) is just
the Leibniz rule for the map

δ : A → Ω1A , (7.5)

G. Landi: LNPm 51, pp. 105–121, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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which can therefore be considered as a derivation of A with values in the
bimodule Ω1A. The pair (δ,Ω1A) is characterized by the following universal
property [21, 25],

Proposition 33. LetM be any A-bimodule and ∆ : A →M any derivation,
namely any map which satisfies the rule (7.1). Then, there exists a unique
bimodule morphism ρ∆ : Ω1A →M such that ∆ = ρ∆ ◦ δ,

id : Ω1A ←→ Ω1A

δ ↑ ↓ ρ∆

∆ : A −→ M

, ρ∆ ◦ δ = ∆ . (7.6)

Proof. Notice, first of all, that for any bimodule morphism ρ : Ω1A →M the
composition ρ◦δ is a derivation with values inM. Conversely, let∆ : A →M
be a derivation; then, if there exists a bimodule morphism ρ∆ : Ω1A → M
such that ∆ = ρ∆ ◦ δ, it is unique. Indeed, the definition of δ gives

ρ∆(δa) = ∆(a) , ∀ a ∈ A , (7.7)

and the uniqueness follows from the fact that the image of δ generates Ω1A
as a left A-module, if one extends the previous map by

ρ∆(
∑
i

aiδbi) =
∑
i

ai∆bi , ∀ ai, bi ∈ A . (7.8)

It remains to prove that ρ∆ as defined in (7.8) is a bimodule morphism. Now,
with ai, bi, f, g ∈ A, by using the fact that both δ and ∆ are derivations, one
has that

ρ∆(f(
∑
i

aiδbi)g) = ρ∆(
∑
i

fai(δbi)g)

= ρ∆(
∑
i

faiδ(big)−
∑
i

faibiδg)

=
∑
i

fai∆(big)−
∑
i

faibi∆g

=
∑
i

fai(∆bi)g

= f(
∑
i

fai∆bi)g

= f(
∑
i

ai∆bi)g ; (7.9)

and this ends the proof of the proposition.
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Let us go back to universal forms. The space ΩpA is defined as

ΩpA = Ω1AΩ1A · · ·Ω1AΩ1A︸ ︷︷ ︸
p−times

, (7.10)

with the product of any two one-forms defined by ‘juxtaposition’,

(a0δa1)(b0δb1) =: a0(δa1)b0δb1
= a0δ(a1b0)δb1 − a0a1δb0δb1 ,

∀ a0, a1, b0, b1 ∈ A . (7.11)

Again we have used the rule (7.1). Thus, elements of ΩpA are finite linear
combinations of monomials of the form

ω = a0δa1δa2 · · · δap , ak ∈ A . (7.12)

The product : ΩpA×ΩqA → Ωp+qA of any p-form with any q-form produces
a p+q form and is again defined by ‘juxtaposition’ and rearranging the result
by using the relation (7.1),

(a0δa1 · · · δap)(ap+1δap+2 · · · δap+q) =:
= a0δa1 · · · (δap)ap+1δap+2 · · · δap+q

= (−1)pa0a1δa2 · · · δap+q

+
p∑

i=1

(−1)p−ia0δa1 · · · δai−1δ(aiai+1)δai+2 · · · δap+q . (7.13)

The algebra ΩpA is a left A-module by construction. It is also a right A-
module, the right structure being given by

(a0δa1 · · · δap)b =: a0δa1 · · · (δap)b
= (−1)pa0a1δa2 · · · δapδb

+
p−1∑
i=1

(−1)p−ia0δa1 · · · δai−1δ(aiai+1)δai+2 · · · δapδb

+a0δa1 · · · δap−1δ(apb) , ∀ ai, b ∈ A . (7.14)

Next, one makes the algebra ΩA a differential algebra by ‘extending’ the
differential δ to an operator : ΩpA → Ωp+1A as a linear operator, unam-
biguously by

δ(a0δa1 · · · δap) =: δa0δa1 · · · δap . (7.15)

It is then easily seen to satisfy the basic relations

δ2 = 0 , (7.16)
δ(ω1ω2) = δ(ω1)ω2 + (−1)pω1δω2 , ω1 ∈ ΩpA , ω2 ∈ ΩA . (7.17)
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Notice that there is nothing like graded commutativity of forms, that is
there are no relationships of the type ω(p)ω(q) = (−1)pqω(q)ω(p), with ω(i) ∈
ΩiA.

The graded differential algebra (ΩA, δ) is characterized by the following
universal property [31, 96],

Proposition 34. Let (Γ,∆) be a graded differential algebra, Γ = ⊕pΓ
p, and

let ρ : A → Γ 0 be a morphism of unital algebras. Then, there exists an
extension of ρ to a morphism of graded differential algebras ρ̃ : ΩA → Γ ,
and this extension is unique,

ρ̃ : ΩpA −→ Γ p

δ ↓ ↓ ∆

ρ̃ : Ωp+1A −→ Γ p+1

, ρ̃ ◦ δ = ∆ ◦ ρ̃ . (7.18)

Proof. Given the morphism ρ : A → Γ 0, one defines ρ̃ : ΩpA → Γ p by

ρ̃(a0δa1 · · · δap) =: ρ(a0)∆(ρ(a1)) · · ·∆(ρ(ap)) . (7.19)

This map is uniquely defined by ρ since ΩpA is spanned as a left A-module
by monomials a0δa1 · · · δap. Next, the identity (7.13) and its counterpart for
the elements ρ(ai) and the derivation ∆ ensure that products are sent to
products. Finally, by using (7.15) and the fact that ∆ is a derivation, one has

(ρ̃ ◦ δ)(a0δa1 · · · δap) = ρ̃(δa0δa1 · · · δap)
= ∆ρ(a0)∆(ρ(a1)) · · ·∆(ρ(ap))
= ∆((ρ(a0))∆(ρ(a1)) · · ·∆(ρ(ap))
= (∆ ◦ ρ̃)(a0δa1 · · · δap) , (7.20)

which proves the commutativity of the diagram (7.18): ρ̃ ◦ δ = ∆ ◦ ρ̃.
The universal algebra ΩA is not very interesting from the cohomological

point of view. From the very definition of δ in (7.15), it follows that all coho-
mology spaces Hp(ΩA) =: Ker(δ : ΩpA → Ωp+1A)/Im(δ : Ωp−1A → ΩpA)
vanish, except in degree zero where H0(ΩA) = C.

We shall now explicitly construct the algebra ΩA in terms of tensor prod-
ucts. Firstly, consider the submodule of A⊗C A given by

ker(m : A⊗C A → A) , m(a⊗C b) = ab . (7.21)

This submodule is generated by elements of the form 1 ⊗C a − a ⊗C 1 with
a ∈ A. Indeed, if

∑
aibi = m(

∑
ai ⊗C bi) = 0, then one gets

∑
ai ⊗C bi =∑

ai(1⊗C bi−bi⊗C 1). Furthermore, the map ∆ : A → ker(m : A⊗CA → A)
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defined by ∆a =: 1 ⊗C a − a ⊗C 1, satisfies the analogue of (7.1), ∆(ab) =
(∆a)b+ a∆b. There is an isomorphism of bimodules

Ω1A ' ker(m : A⊗C A → A) ,
δa↔ 1⊗C a− a⊗C 1 ,

or
∑

aiδbi ↔
∑

ai(1⊗C bi − bi ⊗C 1) . (7.22)

By identifying Ω1A with the space ker(m : A⊗C A → A) the differential is
given by

δ : A → Ω1A , δa = 1⊗C a− a⊗C 1 . (7.23)

As for forms of higher degree one has, then,

ΩpA ' Ω1A⊗A · · · ⊗A Ω1A︸ ︷︷ ︸
p−times

⊂ A⊗C · · · ⊗C A︸ ︷︷ ︸
(p+1)−times

,

a0δa1δa2 · · · δap �→ a0(1⊗C a1 − a1 ⊗C 1)⊗A · · · ⊗A (1⊗C ap − ap ⊗C 1) ,
∀ ak ∈ A .

(7.24)
For instance, the image of the two form a0δa1δa2 is given by

a0(1⊗C a1 − a1 ⊗C 1)⊗A (1⊗C a2 − a2 ⊗C 1)
= a0 ⊗C a1 ⊗C a2 − a0 ⊗C a1a2 ⊗C 1
− a0a1 ⊗C 1⊗C a2 + a0a1 ⊗C a2 ⊗C 1) ⊂ A⊗C A⊗C A . (7.25)

The multiplication and the bimodule structures are given by,

(ω1 ⊗A · · · ⊗A ωp) · (ωp+1 ⊗A · · · ⊗A ωp+q) =: ω1 ⊗A · · · ⊗A ωp+q ,

a · (ω1 ⊗A · · · ⊗A ωp) =: (aω1)⊗A · · · ⊗A ωp ,
(ω1 ⊗A · · · ⊗A ωp) · a =: ω1 ⊗A · · · ⊗A (ωpa) ,
∀ ωj ∈ Ω1A , a ∈ A . (7.26)

The realization of the differential δ is also easily found. Firstly, consider any
one-form ω =

∑
ai ⊗C bi =

∑
ai(1 ⊗C bi − bi ⊗C 1) (since

∑
aibi = 0). Its

differential δω ∈ Ω1A⊗A Ω1A is given by

δω =:
∑

(1⊗C ai − ai ⊗C 1)⊗A (1⊗C bi − bi ⊗C 1)

=
∑

1⊗C ai ⊗C bi − ai ⊗C 1⊗C bi + ai ⊗C bi ⊗C 1 . (7.27)

Then δ is extended by using the Leibniz rule with respect to the product ⊗A,

δ(ω1⊗A · · ·⊗Aωp) =:
p∑

i=1

(−1)i+1ω1⊗A · · ·⊗Aδωi⊗A · · ·⊗Aωp , ∀ ωj ∈ Ω1A .
(7.28)
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Finally, we mention that if A has an involution ∗, the algebra ΩA is also
made into an involutive algebra by defining

(δa)∗ =: −δa∗ , ∀ a ∈ A (7.29)
(a0δa1 · · · δap)∗ =: (δap)∗ · · · (δa1)∗a∗0

= a∗pδa
∗
p−1 · · · δa∗0

+
p−1∑
i=0

(−1)p+iδa∗p · · · δ(a∗i+1a
∗
i ) · · · δa∗0 . (7.30)

7.1.1 The Universal Algebra of Ordinary Functions

Take A = F(M), with F(M) the algebra of complex valued, continuous
functions on a topological space M , or of smooth functions on a manifold M
(or some other algebra of functions). Then, identify (a suitable completion
of) A⊗C · · · ⊗C A with F(M × · · · ×M). If f ∈ A, then

δf(x1, x2) =: (1⊗C f − f ⊗C 1)(x1, x2) = f(x2)− f(x1) . (7.31)

Therefore, Ω1A can be identified with the space of functions of two variables
vanishing on the diagonal. In turn, ΩpA is identified with the set of functions
f of p+ 1 variables vanishing on contiguous diagonals,

f(x1, · · · , xk−1, x, x, xk+2, · · · , xp+1) = 0 . (7.32)

The differential is given by,

δf(x1, · · ·xp+1) =:
p+1∑
k=1

(−1)k−1f(x1, · · · , xk−1, xk+1, · · · , xp+1) . (7.33)

The A-bimodule structure is given by

(gf)(x1, · · ·xp+1) =: g(x1)f(x1, · · ·xp+1) ,
(fg)(x1, · · ·xp+1) =: f(x1, · · ·xp+1)g(xp+1) , (7.34)

and extends to the product of a p-form with a q-form as follows,

(fh)(x1, · · ·xp+q) =: f(x1, · · ·xp+1)h(xp+1, · · ·xp+q) , (7.35)

Finally, the involution is simply given by

f∗(x1, · · ·xp+1) = (f(x1, · · ·xp+1))∗ . (7.36)

Notice that even if the algebra is commutative fh and hf are different with
no relations among them (there is nothing like graded commutativity).
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7.2 Connes’ Differential Forms

Given a spectral triple (A,H, D), one constructs an exterior algebra of forms
by means of a suitable representation of the universal algebra ΩA in the
algebra of bounded operators on H. The map

π : ΩA −→ B(H) ,
π(a0δa1 · · · δap) =: a0[D, a1] · · · [D, ap] , aj ∈ A , (7.37)

is clearly a homomorphism of algebras since both δ and [D, ·] are derivations
on A. Furthermore, from [D, a]∗ = −[D, a∗], one finds that π(ω)∗ = π(ω∗)
for any form ω ∈ ΩA and so π is a ∗-homomorphism.

One might think of defining the space of forms as the image π(ΩA). This
is not possible, since in general, π(ω) = 0 does not imply that π(δω) = 0.
Such unpleasant forms ω, for which π(ω) = 0 while π(δω) 
= 0, are called junk
forms. They have to be disposed of in order to construct a true differential
algebra and make π into a homomorphism of differential algebras.

Proposition 35. Let J0 =: ⊕pJ
p
0 be the graded two-sided ideal of ΩA given

by
Jp0 =: {ω ∈ ΩpA, π(ω) = 0 } . (7.38)

Then, J = J0 + δJ0 is a graded differential two-sided ideal of ΩA.
Proof. It is enough to show that J is a two-sided ideal, the property δ2 = 0
implying that it is differential. Take ω = ω1 + δω2 ∈ Jp, with ω1 ∈ Jp0
and ω2 ∈ Jp−1

0 . If η ∈ ΩqA, then ωη = ω1η + (δω2)η = ω1η + δ(ω2η) −
(−1)p−1ω2δη = (ω1η − (−1)p−1ω2δη) + δ(ω2η) ∈ Jp+q. Analogously, one
finds that ηω ∈ Jp+q.

Definition 17. The graded differential algebra of Connes’ forms over the
algebra A is defined by

ΩDA =: ΩA/J ' π(ΩA)/π(δJ0) . (7.39)

It is naturally graded by the degrees of ΩA and J , the space of p-forms being
given by

Ωp
DA = ΩpA/Jp . (7.40)

Since J is a differential ideal, the exterior differential δ defines a differential
on ΩDA,

d : Ωp
DA −→ Ωp+1

D A ,
d[ω] =: [δω] ' [π(δω)] , (7.41)

with ω ∈ ΩpA and [ω] the corresponding class in Ωp
DA.
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Let us see the structure of the forms more explicitly.

• 0-forms.
Since we take A to be a subalgebra of B(H), we have that J ∩ Ω0A =
J0 ∩ A = {0}. Thus

Ω0
DA ' A . (7.42)

• 1-forms.
We have J ∩Ω1A = J0 ∩Ω1A+ J0 ∩Ω0A = J0 ∩Ω1A. Thus,

Ω1
DA ' π(Ω1A) , (7.43)

and this space coincides with the A-bimodule of bounded operators on H
of the form

ω1 =
∑
j

aj0[D, aj1] , aji ∈ A . (7.44)

• 2-forms.
We have J ∩Ω2A = J0 ∩Ω2A+ J0 ∩Ω1A. Thus,

Ω2
DA ' π(Ω2A)/π(δ(J0 ∩Ω1A)) . (7.45)

Therefore, the A-bimodule Ω2
DA of 2-forms is made up of classes of ele-

ments of the kind

ω2 =
∑
j

aj0[D, aj1][D, aj2] , aji ∈ A , (7.46)

modulo the sub-bimodule of operators

{
∑
j

[D, bj0][D, bj1] | bji ∈ A ,
∑
j

bj0[D, bj1] = 0 } . (7.47)

• p-forms.
In general, the A-bimodule Ωp

DA of p-forms is given by

Ωp
DA ' π(ΩpA)/π(δ(J0 ∩Ωp−1A)) , (7.48)

and is made of classes of operators of the form

ωp =
∑
j

aj0[D, aj1][D, aj2] · · · [D, ajp] , aji ∈ A , (7.49)

modulo the sub-bimodule of operators

{
∑
j

[D, bj0][D, bj1] · · · [D, bjp−1] | bji ∈ A ,
∑
j

bj0[D, bj1] · · · [D, bjp−1] = 0 } .

(7.50)

As for the exterior differential (7.41), it is given by

d


∑

j

aj0[D, aj1][D, ajp] · · · [D, ajp]


 =


∑

j

[D, aj0][D, aj1][D, aj2] · · · [D, ajp]


 .

(7.51)
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7.2.1 The Usual Exterior Algebra

The methods described in the previous Section, when applied to the canon-
ical triple over an ordinary manifold, reproduce the usual exterior algebra
over that manifold. Consider the canonical triple (A,H, D) on a closed n-
dimensional Riemannian manifold M as described in Sect. 6.5. We recall
that A = F(M) is the algebra of smooth functions on M ; H = L2(M,S) is
the Hilbert space of square integrable spinor fields over M ; D is the Dirac
operator of the Levi-Civita connection as given by (6.52). We immediately
see that, for any f ∈ A,

π(δf) =: [D, f ] = γµ(x)∂µf = γ(dMf) , (7.52)

where γ : Γ (M,C(M)) −→ B(H) is the algebra morphism defined in (6.48)
and dM denotes the usual exterior derivative on M . In general, for fj ∈ A,

π(f0δf1 . . . δfp) =: f0[D, f1] . . . [D, fp] = γ(f0dMf1 · . . . · dMfp) , (7.53)

where the differentials dMfj are now regarded as sections of the Clifford
bundle C1(M) (while the functions fj can be thought of as sections of C0(M))
and the dot · denotes the Clifford product in the fibers of C(M) = ⊕kCk(M).
It is worth noticing that the image of the map π is made up of multiplicative
operators on the Hilbert space H.

Since a generic differential 1-form on M can be written as
∑

j f
j
0dMf

j
1 ,

with f j0 , f
j
1 ∈ A, using (7.52) we can identify Connes’ 1-forms Ω1

DA with the
usual differential 1-forms Λ1(M),

Ω1
DA ' Λ1(M) . (7.54)

To be more precise, we are really identifying the space Ω1
DA with the image

in B(H), through the morphism γ, of the space Λ1(M).
Next, we analyze the junk 2-forms. For any f ∈ A, consider the universal

forms

α =
1
2

(fδf − (δf)f) 
= 0 ,

δα = δfδf . (7.55)

One easily finds that

π(α) =
1
2
γµ(f∂µf − (∂µf)f) = 0 ,

π(δα) = γµγν∂µf∂νf

=
1
2

(γµγν + γνγµ)∂µf∂νf +
1
2

(γµγν − γνγµ)∂µf∂νf

= (−gµν∂µf∂νf)I2[n/2] 
= 0 . (7.56)
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Here we have used (6.49), gµν being the components of the metric. We con-
clude that the form δα is a junk 2-form. A generic junk 2-form is a combina-
tion (with coefficients in A) of forms like the one in (7.55). As a consequence,
we infer from expression (7.56) that π(δ(J0 ∩ Ω1A)) is generated as an A-
module by the matrix I2[n/2] . On the other hand, if f1, f2 ∈ A, from (7.53)
we have that

π(δf1δf2) = γ(dMf1 · dMf2)
= γµγν∂µf1∂νf2

=
1
2

(γµγν − γνγµ)∂µf1∂νf2 +
1
2

(γµγν + γνγµ)∂µf∂νf

= γ(dMf1 ∧ dMf2)− g(dMf1, dMf2)I2[n/2] . (7.57)

Therefore, since a generic differential 2-form on M can be written as a sum∑
j f

j
0dMf

j
1 ∧ dMf j2 , with f j0 , f

j
1 , f

j
2 ∈ A, by using (7.56) and (7.57) to elim-

inate junk forms, we can identify Connes’ 2-forms Ω2
DA with the image

through γ of the usual differential 2-forms Λ2(M),

Ω2
DA ' Λ2(M) . (7.58)

The previous identifications can be generalized and one can identify (through
the map γ)

Ωp
DA ' Λp(M) . (7.59)

In particular, Ωp
DA = 0 if p > dimM .

To establish the identification (7.59) we need some additional facts from
Clifford bundle theory which we take from [11].

For each m ∈ M , the Clifford algebra Cm(M) has a natural filtration,
Cm(M) =

⋃
C

(p)
m , where C(p)

m is spanned by products ξ1 · ξ2 · . . . · ξk, with
k ≤ p and ξj ∈ T ∗

mM . There is a natural graded algebra

grCm =:
∑
p

grpCm , grpCm = C(p)
m /C(p−1)

m , (7.60)

with a natural projection, the symbol map,

σp : C(p)
m −→ grpCm . (7.61)

The graded algebra (7.60) is canonically isomorphic to the complexified ex-
terior algebra ΛC(T ∗

mM), the isomorphism being given by

Λp
C
(T ∗

mM) � ξ1 ∧ ξ2 ∧ . . . ∧ ξp −→ σp(ξ1 · ξ2 · . . . · ξp) ∈ grpCm . (7.62)

Now, the Clifford algebra Cm also has a natural Z2 grading given by the
parity of the number of terms ξj , ξj ∈ T ∗

m in a typical product ξ1 · ξ2 · . . . · ξk.
If Cp

m is the subspace of C(p)
m made up of elements with the same parity as p,
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then the kernel of the symbol map σp, when restricted to Cp
m coincides with

Cp−2
m and we have the identification1

Λp
C
(T ∗

mM) ' Cp
m / Cp−2

m . (7.63)

By considering the union over all points m ∈ M , one constructs the corre-
sponding bundles over M . We shall still denote by σp the symbol map

σp : Γ (C(p)) −→ Γ (grpC) . (7.64)

But to avoid confusion we shall indicate by sp its restriction to Γ (Cp). We
stress that

kersp ' Γ (Cp−2) . (7.65)

Proposition 36. Let (A,H, D) be the canonical triple over the manifold M .
Then,

π(δ(J0 ∩Ωp−1A)) = γ(kersp) , p ≥ 2 . (7.66)

Proof. Consider the universal (p−1)-form ω = 1
2 (f0δf0− δf0f0)δf1 . . . δfp−2.

Then π(ω) = 0 and π(δω) = γ(−||dMf0||2dMf1 · . . . · dMfp−2). Since terms
of the type ||dMf0||2dMf1 · . . . · dMfp−2 generate Γ (Cp−2) as an A-module,
one can find a universal form ω′ ∈ Ωp−1A with π(ω′) = 0 and π(δω′) = γ(ρ)
where ρ is any given element of Γ (Cp−2). By using (7.65), this proves the
inclusion γ(kersp) ⊆ π(δ(J0 ∩Ωp−1A)).

Conversely, with ω =
∑

j f
j
0δf

j
1 . . . δf

j
p−1 a generic universal (p− 1) form,

the condition

π(ω) =: γµ1 · · · γµp−1
∑
j

f j0∂µ1f
j
1 . . . ∂µp−1f

j
p−1 = 0 , (7.67)

implies, in particular, that∑
j

f j0∂[µ1f
j
1 . . . ∂µp−1]f

j
p−1 = 0 , (7.68)

with the square brackets indicating complete anti-symmetrization of the en-
closed indices. This condition readily yields the vanishing of the top compo-
nent of

π(δω) =: γµ0γµ1 · · · γµp−1
∑
j

∂µ0f
j
0∂µ1f

j
1 . . . ∂µp−1f

j
p−1 . (7.69)

1 By using the canonical inner product given by the trace in the spinor represen-
tation, Λp

C
(T ∗

mM) can be identified with the orthogonal complement of the space
C

(p−1)
m in C

(p)
m or equivalently, with the orthogonal complement of the space

Cp−2
m in the space Cp

m.
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Indeed,∑
j

∂[µ0f
j
0∂µ1f

j
1 . . . ∂µp−1]f

j
p−1 = ∂[µ0(

∑
j

f j0∂µ1f
j
1 . . . ∂µp−1]f

j
p−1)

−
∑
j

f j0∂[µ0∂µ1f
j
1 . . . ∂µp−1]f

j
p−1

= 0 . (7.70)

It follows that π(δω) ∈ γ(Γ (Cp−2) ' γ(kersp), and this proves the inclusion
π(δ(J0 ∩Ωp−1A)) ⊆ γ(kersp).

Proposition 37. Let (A,H, D) be the canonical triple over the manifold M .
Then, a pair T1 and T2 of operators on the Hilbert space H is of the form
T1 = π(ω), T2 = π(δω) for some universal form ω ∈ ΩpA, if and only if
there are sections ρ1 of Cp and ρ2 of Cp+1, such that

Tj = γ(ρj) , j = 1, 2 ,
dMσp(ρ1) = σp+1(ρ2) . (7.71)

Proof. If ω = f0δf1 . . . δfp, the identities T1 = π(ω) = γ(f0δf1 . . . δfp) and

T2 = π(ω) = γ(δf0δf1 . . . δfp) will imply that ρ1 = f0dMf1 · . . . · dMfp , ρ2 =
dMf0 ·dMf1 ·. . .·dMfp, and in turn σp(ρ1) = f0dMf1∧. . .∧dMfp , σp+1(ρ2) =
dMf0 ∧ dMf1 ∧ . . . ∧ dMfp, and finally dMσp(ρ1) = σp+1(ρ2).

Conversely, if ρ1 ∈ Γ (Cp) and ρ2 ∈ Γ (Cp+1) are such that dMσp(ρ1) =
σp+1(ρ2), then ρ2 is determined by ρ1 up to an ambiguity in Γ (Cp−1). Sup-
pose first that ρ2 ∈ Γ (Cp−1) ' kersp+1; we can then take ρ1 = 0. So one
needs a universal form ω ∈ ΩpA such that π(ω) = 0, π(δω) = γ(ρ2). The
existence of ω follows from the previous Proposition (for p+ 1).
Furthermore, if ρ2 has components only in Γ (Cp+1)D Γ (Cp−1), we can take
ρ1 =

∑
j f

j
0dMf

j
1 · . . . · dMf jp , ρ2 =

∑
j dMf

j
0 · dMf j1 · . . . · dMf jp . Then, the

universal ω ∈ ΩpA is just ω =
∑

j f
j
0δf

j
1 · . . . · δf jp .

Proposition 38. Let (A,H, D) be the canonical triple over the manifold M .
Then, the symbol map sp gives an isomorphism

sp : Ωp
DA −→ Γ (Λp

C
T ∗M) , (7.72)

which commutes with the differential.

Proof. Firstly, one identifies π(ΩpA) with Γ (Cp) through γ. Then, Proposi-
tion 36 shows that π(δ(J0 ∩Ωp−1A)) = kersp. The commutativity with the
differential follows from Proposition 37. Finally, one observes that from the
definition of the symbol map, if ρj ∈ Γ (Cpj ), j = 1, 2, then
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sp1+p2(ρ1ρ2) = sp1(ρ1) ∧ sp2(ρ2) ∈ Γ (Λp1+p2
C

T ∗M) . (7.73)

As a consequence, the symbol maps sp combine to yield an isomorphism of
graded differential algebras

s : ΩD(C∞(M)) −→ Γ (ΛCT
∗M) , (7.74)

which is also an isomorphism of C∞(M)-modules.

7.2.2 The Two-Point Space Again

As a very simple example, we shall now construct Connes’ exterior algebra
on the two-point space Y = {1, 2} with the 0-dimensional even spectral
triple (A,H, D) constructed in Sect. 6.7. We already know that the associated
algebra A of continuous function is the direct sum A = C⊕C and any element
f ∈ A is a couple of complex numbers (f1, f2), with fi = f(i) the value of f
at the point i.

As we saw in Sect. 7.1.1, the space Ω1A of universal 1-forms can be
identified with the space of functions on Y ×Y which vanish on the diagonal.
Since the complement of the diagonal in Y ×Y is made of two points, namely
the couples (1, 2) and (2, 1), the space Ω1A is 2-dimensional and a basis is
constructed as follows. Consider the function e defined by e(1) = 1, e(2) = 0;
clearly, (1− e)(1) = 0, (1− e)(2) = 1. A possible basis for the 1-forms is then
given by

eδe , (1− e)δ(1− e) . (7.75)

Their values are given by

(eδe)(1, 2) = −1 , ((1− e)δ(1− e))(1, 2) = 0
(eδe)(2, 1) = 0 , ((1− e)δ(1− e))(2, 1) = −1 . (7.76)

Any universal 1-form α ∈ Ω1A can be written as α = λeδe+µ(1−e)δ(1−e),
with λ, µ ∈ C. As for the differential, δ : A → Ω1A, it is essentially a finite
difference operator. For any f ∈ A one finds that

δf = (f1 − f2)eδe− (f1 − f2)(1− e)δ(1− e) = (f1 − f2)δe . (7.77)

As for the space ΩpA of universal p-forms, it can be identified with the
space of functions of p + 1 variables which vanish on contiguous diagonals.
Since there are only two possible strings giving nonvanishing results, namely
(1, 2, 1, 2, · · ·) and (2, 1, 2, 1, · · ·) the space ΩpA is two dimensional as well
and one possible basis is given by

e(δe)p , (1− e)(δ(1− e))p . (7.78)
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The values taken by the first basis element are

(e(δe)p)(1, 2, 1, 2, · · ·) = ±1 , (7.79)
(e(δe)p)(2, 1, 2, 1, · · ·) = 0 ; (7.80)

and in (7.79) the plus (minus) sign occurs if the number of contiguous couples
(1, 2) is even (odd). As for the second basis element we have

((1− e)(δ(1− e))p)(1, 2, 1, 2, · · ·) = 0 , (7.81)
((1− e)(δ(1− e))p)(2, 1, 2, 1, · · ·) = ±1 , (7.82)

where, in (7.82), the plus (minus) sign occurs if the number of contiguous
couples (2, 1) is even (odd).

We now move to Connes’ forms. We recall that the finite dimensional
Hilbert space H is a direct sum H = H1⊕H2; elements of A act as diagonal
matricesA � f �→ diag(f1IdimH1 , f2IdimH2); andD is an off diagonal operator[

0 M∗
M 0

]
,M ∈ Lin(H1,H2) .

One immediately finds that

π(eδe) =: e[D, e] =
[

0 −M∗

0 0

]
,

π((1− e)δ(1− e)) =: (1− e)[D, 1− e] =
[

0 0
−M 0

]
, (7.83)

and the representation of a generic 1-form α = λeδe + µ(1 − e)δ(1 − e) is
given by

π(α) = −
[

0 λM∗

µM 0

]
. (7.84)

As for the representation of 2-forms one gets

π(eδeδe) =: e[D, e][D, e] =
[−M∗M 0

0 0

]
,

π((1− e)δ(1− e)δ(1− e)) =: (1− e)[D, 1− e][D, 1− e]
=
[

0 0
0 −MM∗

]
. (7.85)

In particular the operator π(δα) is readily found to be

π(δα) = −(λ+ µ)
[
M∗M 0

0 MM∗

]
, (7.86)

from which we infer that there are no junk 1-forms. In fact, there are no junk
forms whatsoever. Even forms are represented by diagonal operators while
odd forms are represented by off diagonal ones.
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7.3 Scalar Product for Forms

In order to define a scalar product for forms, we need another result which
has been proven in [29]

Proposition 39. Let (A,H, D) be an n-dimensional spectral triple. Then,
the state φ on A defined by

φ(a) =: trω(π(a)|D|−n) , ∀ a ∈ A , (7.87)

with trω denoting the Dixmier trace, is a trace state, i.e.

φ(ab) = φ(ba) , ∀ a ∈ A . (7.88)

Thus, we get a positive trace on A as was alluded to at the end of Sect. 6.6.
In fact, one needs to extend the previous result to all of π(ΩA). Now,

this is not possible in general and (rather mild, indeed) regularity conditions
on the algebra are required. Let us recall from Sect. 6.4, that the subalgebra
A2 of A was generated by elements a ∈ A such that both a and [D, a] are in
the domain of the derivation δ defined in (6.41). In [29] it is proven that the
state φ on π(ΩA) defined by

φ(T ) =: trω(T |D|−n) , ∀ T ∈ π(ΩA) , (7.89)

is a trace state,

φ(ST ) = φ(TS) , ∀ S, T ∈ π(ΩA) , (7.90)

provided that A2 = A (or that A2 is a large enough subalgebra). We refer to
[29] for the proofs of the previous statements. Here we only remark that, by
using the cyclic property of trω, the condition (7.90) is equivalent to one of
the following,

trω([T, |D|−n]) = 0 , ∀ T ∈ π(ΩA) ,
trω(ST |D|−n) = trω(S|D|−nT ) , ∀ S, T ∈ π(ΩA) . (7.91)

Property (7.90) (together with the cyclic property of trω) implies that the
following three traces coincide and can be taken as a definition of an inner
product on π(ΩpA),2

〈T1, T2〉p =: trω(T ∗
1 T2|D|n)

= trω(T ∗
1 |D|nT2)

= trω(T2|D|nT ∗
1 ) , ∀ T1, T2 ∈ π(ΩpA) . (7.92)

2 An alternative definition of the integral and of the inner product for forms which
is based on the heat kernel expansion and uses the heat operator exp(−εD2)
has been devised in [78]. When applied to the canonical triple over a manifold it
gives the usual results.
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Forms of different degree are defined to be orthogonal.
Now let H̃p be the corresponding completion of π(ΩpA). With a ∈ A and
T1, T2 ∈ π(ΩpA), we obtain

〈aT1, aT2〉p = trω(T ∗
1 a

∗|D|naT2) = trω(T2|D|nT ∗
1 a

∗a) , (7.93)
〈T1a, T2a〉p = trω(a∗T ∗

1 |D|nT2a) = trω(a∗aT ∗
1 |D|nT2) . (7.94)

As a consequence, the unitary group U(A) of A,

U(A) =: {u ∈ A | u∗u = uu∗ = 1} , (7.95)

has two commuting unitary representations, L and R, on H̃p given by left and
right multiplications. Now, as π(δ(J0 ∩ Ωp−1A) is a submodule of π(ΩpA),
its closure in H̃p is left invariant by these two representations. Let Pp be
the orthogonal projection of H̃p, with respect to the inner product (7.92),
which projects onto the orthogonal complement of π(δ(J0 ∩ Ωp−1A)). Then
Pp commutes with L(a) and R(a), if a ∈ U(A) and so for any a ∈ A. Define
Hp = PpH̃p; this space also coincides with the completion of the Connes’
forms Ωp

DA. The left and right representations of A on H̃p reduce to algebra
representations on Hp which extend the left and right module action of A on
Ωp
DA.

As an example, consider again the algebraA = C∞(M) and the associated
canonical triple (A,H, D) over a manifold M of dimension n = dimM . Then,
the trace requirement (7.90) is satisfied.3 Furthermore,

Proposition 40. With the canonical isomorphism between ΩDA and
Γ (ΛCT

∗M) described in Sec. 7.2.1, the inner product on Ωp
DA is propor-

tional to the Riemannian inner product on p-forms,

〈ω1, ω2〉p = (−1)p
2[n/2]+1−nπ−n/2

nΓ (n/2)

∫
M

ω1 ∧∗ ω2 ,

∀ ω1, ω2 ∈ Ωp
DA ' Γ (ΛCT

∗M) . (7.96)

Proof. If T ∈ ΩpA and ρ ∈ Γ (Cp), with π(T ) = γ(ρ), we have that Ppπ(T ) =
γ(ω) ∈ Hp, with ω the component of ρ in Γ (Cp D Cp−1). Using the trace
theorem 31, we get

3 In fact, in the commutative situation, the regularity condition does not play
a crucial rôle. On a manifold of dimension n, the pseudo-differential operator
[T, |D|−n], with T the image of a section of the Clifford bundle, is of order n− 1
and its Dixmier trace vanishes (see Sect. 6.3). As a consequence, the first of
(7.91) and then (7.90) are automatically satisfied.
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〈γ(ω1), γ(ω2)〉p = trω(ω∗
1ω2|D|−n)

=
1

n(2π)n

∫
S∗M

trσ−n(γ(ω1)∗γ(ω2)|D|−n)

=
1

n(2π)n
(
∫
Sn−1

dξ)
∫
M

tr(γ(ω1)∗γ(ω2)dx

=
21−nπ−n/2

nΓ (n/2)

∫
M

tr(γ(ω1)∗γ(ω2))dx

= (−1)p
2[n/2]+1−nπ−n/2

nΓ (n/2)

∫
M

ω1 ∧∗ ω2 .

The last equality follows from the explicit (partially normalized) trace in the
spin representation. Indeed,

ωj = 1
p!ω

(j)
µ1···µpdx

µ1 ∧ · · · ∧ dxµp , j = 1, 2 , ⇒

γ(ωj) = 1
p!ω

(j)
µ1···µpγ

µ1 ∧ · · · ∧ γµp = 1
p!ω

(j)
µ1···µpe

µ1
a1
· · · eµp

apγ
a1 ∧ · · · ∧ γap , ⇒

tr(γ(ω1)∗γ(ω2)) = (−1)p2[ n
2 ]ω

(1)∗
µ1···µpω

(2)
ν1···νpe

µ1
a1
· · · eµp

ap e
ν1
b1
· · · eνp

bp
ηa1b1 · · · ηapbp

= (−1)p2[ n
2 ]ω

(1)∗
µ1···µpω

(2)
ν1···νpg

µ1ν1 · · · gµpνp ,
(7.97)

from which one finds tr(γ(ω1)∗γ(ω2))dx = (−1)p2[n/2]ω1 ∧∗ ω2 .



8 Connections on Modules

As an example of the general situation, we shall start by describing the ana-
logue of ‘electromagnetism’, namely the algebraic theory of connections (vec-
tor potentials) on a rank one trivial bundle (with fixed trivialization).

8.1 Abelian Gauge Connections

Suppose we are given a spectral triple (A,H, D) from which we construct the
algebra ΩDA = ⊕pΩ

p
DA of forms. We also take it to be of dimension n.

Definition 18. A vector potential V is a self-adjoint element of Ω1
DA. The

corresponding field strength is the two-form θ ∈ Ω2
DA defined by

θ = dV + V 2 . (8.1)

Thus, V is of the form V =
∑

j aj [D, bj ], aj , bj ∈ A with V self-adjoint,
V ∗ = V . Notice that, although V can be written in several ways as a sum,
its exterior derivative dV ∈ Ω2

DA is defined unambiguously. It can though be
written in several ways as a sum, dV =

∑
j [D, aj ][D, bj ], modulo junk. The

curvature θ is self-adjoint as well. It is evident that V 2 is self-adjoint if V is.
As for dV , we have,

dV − (dV )∗ =
∑
j

[D, aj ][D, bj ]−
∑
j

[D, b∗j ][D, a∗j ] . (8.2)

Since V ∗ = −∑j [D, b
∗
j ]a∗j = −∑j [D, b

∗
ja

∗
j ] +

∑
j b

∗
j [D, a∗j ] and V − V ∗ = 0,

we get that the following is a junk 2-form,

j2 = dV − dV ∗ =
∑
j

[D, aj ][D, bj ]−
∑
j

[D, b∗j ][D, a∗j ] . (8.3)

But j2 is just the right-hand side of (8.2), and we infer that, modulo junk
forms, dV = (dV )∗.

Since the algebra A is taken to be a unital ∗-algebra, it makes sense to
consider the group U(A) of unitary elements of A,

G. Landi: LNPm 51, pp. 123–132, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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U(A) =: {u ∈ A | uu∗ = u∗u = I} . (8.4)

This group provides the (infinite dimensional group of) gauge transforma-
tions.

Definition 19. The unitary group U(A) acts on the vector potential V with
the usual affine action

(V, u) −→ V u =: uV u∗ + u[D,u∗] , u ∈ U(A) . (8.5)

The field strength θ will then transform with the adjoint action,

θu = dV u + (V u)2

= duV u∗ + udV u∗ − uV du∗ + du[D,u∗] + uV 2u∗ +
+ uV [D,u∗] + u[D,u∗]uV u∗ + u[D,u∗]u[D,u∗]

= u(dV + V 2)u∗ , (8.6)

where we have used the relations du = [D,u] and udu∗ + (du)u∗ = 0; the
latter follows from u∗u = I. Thus,

(θ, u) −→ θu = uθu∗ , u ∈ U(A) . (8.7)

We can now introduce the analogue of the Yang-Mills functional.

Proposition 41. 1. The functional

YM(V ) =:
〈
dV + V 2, dV + V 2〉

2 , (8.8)

is positive, quartic and invariant under gauge transformations

V −→ V u =: uV u∗ + u[D,u∗] , u ∈ U(A) . (8.9)

2. The functional

I(α) =: trω(π(δα+ α2))2|D|−n) , (8.10)

is positive, quartic and invariant on the space {α ∈ Ω1A | α = α∗}, under
gauge transformations

α −→ αu =: uαu∗ + uδu∗ , u ∈ U(A) . (8.11)

3.
YM(V ) = inf {I(α) | π(α) = V } . (8.12)

Proof. Statements 1. and 2. are consequences of properties of the Dixmier
trace and of the fact that both dV + V 2 and δα+α2 transform ‘covariantly’
under gauge transformations. As for statement 3., it follows from the nearest-
point property of an orthogonal projector: as an element of H2, dV + V 2 is
equal to P (π(δα + α2)) for any α ∈ Ω1A such that π(α) = V . Since the
ambiguity in π(δα) is exactly π(δ(J0 ∩Ω1A), one has established 3.
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Point 3. of Prop. 41 just states that the ambiguity in the definition of the
curvature θ = dV + V 2 can be ignored by taking the infimum YM(V ) =
Inf {trωθ2|D|−n} over all possibilities for θ = dV +V 2, the exterior derivative
dV =

∑
j [D, a

j
0][D, aj1] being ambiguous.

As already mentioned, the module E = A is just the analogue of a rank
one trivial bundle with fixed trivialization so that one can identify the module
of sections of the bundle with the complex-valued functions on the base.

8.1.1 Usual Electromagnetism

For the canonical triple (A,H, D) over the manifold M , consider a 1-form
V ∈ Λ1(M) and a universal 1-form α ∈ Ω1A such that σ1(π(α)) = V .
Then σ2(π(δα)) = dMV . From proposition 37, for any two such α’s, the
corresponding operators π(δα) differ by an element of π(δ(J0∩Ω1A) = kerσ2.
Then, by using (7.96)

YM(V ) = inf {I(α) | π(α) = V } = 〈dMV, dMV 〉2
=

2[n/2]+1−nπ−n

nΓ (n/2)

∫
||dMV ||2dx , (8.13)

which is (proportional to) the usual abelian gauge action.

8.2 Universal Connections

We now introduce the notion of a connection on a (finite projective) mod-
ule. We shall do it with respect to the universal calculus ΩA introduced
in Sect. 7.1 as this is the prototype for any calculus. So, to be precise, by
a connection we really mean an universal connection although we drop the
adjective universal whenever there is no risk of confusion.

Definition 20. A (universal) connection on the right A-module E is a C-
linear map

∇ : E ⊗A ΩpA −→ E ⊗A Ωp+1A , (8.14)

defined for any p ≥ 0, and satisfying the Leibniz rule

∇(ωρ) = (∇ω)ρ+ (−1)pωδρ , ∀ ω ∈ E ⊗A ΩpA , ρ ∈ ΩA . (8.15)

In this definition, the adjective universal refers to the use of the universal
forms and to the fact that a connection constructed for any calculus can be
obtained from a universal one via a projection much in the same way as any
calculus can be obtained from the universal one. In Proposition 45 we shall
explicitly construct the projection for the Connes’ calculus.
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A connection is completely determined by its restriction ∇ : E → E ⊗AΩ1A,
which satisfies

∇(ηa) = (∇η)a+ η ⊗A δa , ∀ η ∈ E , a ∈ A . (8.16)

This is then extended by using the Leibniz rule (8.15).

Proposition 42. The composition,

∇2 = ∇ ◦∇ : E ⊗A ΩpA −→ E ⊗A Ωp+2A , (8.17)

is ΩA-linear.
Proof. By condition (8.15) one has

∇2(ωρ) = ∇ ((∇ω)ρ+ (−1)pωδρ)
= (∇2ω)ρ+ (−1)p+1(∇ω)δρ+ (−1)p(∇ω)δρ+ ωδ2ρ
= (∇2ω)ρ . (8.18)

The restriction of ∇2 to E is the curvature

θ : E → E ⊗A Ω2A , (8.19)

of the connection. By (8.15) it is A-linear, θ(ηa) = θ(η)a for any η ∈ E , a ∈ A,
and satisfies

∇2(η ⊗A ρ) = θ(η)ρ , ∀ η ∈ E , ρ ∈ ΩA . (8.20)

When the algebra A is commutative one can make sense of a Bianchi
identity [114]. If A is commutative the space EndAE can be given a right
A-module structure and one introduces the module EndAE ⊗A ΩA . Then,
since E is projective, any A-linear map : E → E ⊗A ΩA can be thought
of as a matrix with entries in ΩA or as an element in EndAE ⊗A ΩA. In
particular, the curvature θ can be thought of as an element of EndAE⊗AΩ2A.
Furthermore, by viewing any element of EndAE ⊗AΩA as a map from E into
E ⊗AΩA, the connection ∇ on E determines a connection [∇, · ] on EndAE
by

[∇, · ] : EndAE ⊗A ΩpA −→ EndAE ⊗A Ωp+1A ,
[∇, α] =: ∇ ◦ α− α ◦ ∇ , ∀ α ∈ EndAE ⊗A ΩpA. (8.21)

Proposition 43. With the algebra A commutative, the curvature θ satisfies
the following Bianchi identity,

[∇, θ] = 0 . (8.22)

Proof. Since θ : E → Ω2A, the map [∇, θ] makes sense. Furthermore,

[∇, θ] = ∇ ◦∇2 −∇2 ◦ ∇ = ∇3 −∇3 = 0 . (8.23)
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Connections always exist on a projective module. To start with, let us
consider the case of a free module E = CN ⊗C A ' AN . Forms with values
in CN ⊗C A can be identified canonically with

CN ⊗C ΩA = (CN ⊗C A)⊗A ΩA ' (ΩA)N . (8.24)

Then, a connection is given by the operator

∇0 = I⊗ δ : CN ⊗C Ω
pA −→ CN ⊗C Ω

p+1A . (8.25)

If we think of ∇0 as acting on (ΩA)N we can represent it as the operator
∇0 = (δ, δ, · · · , δ) (N -times).
Consider a generic projective module E , and let p : CN ⊗C A → E and
λ : E → CN ⊗C A be the corresponding projection and inclusion maps as in
Sect. 4.2. On E there is a connection ∇0 given by the composition

E ⊗AΩpA λ−→ CN⊗CΩ
pA I⊗δ−→ CN⊗CΩ

p+1A p−→ E⊗AΩp+1A , (8.26)

where we use the same symbol to denote the natural extension of the maps
λ and p to E-valued forms. The connection defined in (8.26) is called the
Grassmann connection and is explicitly given by

∇0 = p ◦ (I⊗ δ) ◦ λ . (8.27)

In what follows, we shall simply indicate it by

∇0 = pδ. (8.28)

In fact, it turns out that the existence of a connection on the module E is
completely equivalent to its being projective [50].

Proposition 44. A right module has a connection if and only if it is projec-
tive.

Proof. Consider the exact sequence of right A-modules

0 −→ E ⊗A Ω1A j−→ E ⊗C A m−→ E −→ 0 , (8.29)

where j(ηδa) = η ⊗ a − ηa ⊗ 1 and m(η ⊗ a) = ηa; both of these maps are
(right) A-linear. Now, as a sequence of vector spaces, (8.29) admits a splitting
given by the section s0(η) = η ⊗ 1 of m, m ◦ s0 = idE . Furthermore, all such
splittings form an affine space which is modeled over the space of linear maps
from the base space E to the subspace j(E ⊗A Ω1A). This means that there
is a one to one correspondence between linear sections s : E → E ⊗C A of m
( m ◦ s = idE ) and linear maps ∇ : E → E ⊗A Ω1A given by

s = s0 + j ◦ ∇ , s(η) = η ⊗ 1 + j(∇η) , ∀ η ∈ E . (8.30)
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Since

s(ηa)− s(η)a = ηa⊗ 1− η ⊗ a+ j(∇(ηa))− j(∇(η))a
= j(∇(ηa)−∇(η)a− ηδa) , (8.31)

and as j is injective, we see that ∇ is a connection if and only if s is a right
A-module map,

∇(ηa)−∇(η)a− ηδa = 0 ⇔ s(ηa)− s(η)a = 0 . (8.32)

But such module maps exist if and only if E is projective: any right module
map s : E → E ⊗CA such that m ◦ s = IE identifies E with a direct summand
of the free module E ⊗CA, where the corresponding idempotent is p = s ◦m.

The previous proposition also says that the space CC(E) of all universal
connections on E is an affine space modeled on EndAE ⊗A Ω1A. Indeed, if
∇1,∇2 are two connections on E , their difference is A-linear,

(∇1 −∇2)(ηa) = ((∇1 −∇2)(η))a , ∀ η ∈ E , a ∈ A , (8.33)

so that ∇1−∇2 ∈ EndA⊗AΩ1A. By using (8.28) and (4.28) any connection
can be written as

∇ = pδ + α , (8.34)

where α is any element in EndAE ⊗A Ω1A ' MN (A) ⊗A Ω1A such that
α = αp = pα = pαp; here p is the idempotent which identifies E as E = pAN .
The matrix of 1-forms α as in (8.34) is called the gauge potential of the
connection ∇. For the corresponding curvature θ of ∇ we have

θ = pδα+ α2 + pδpδp . (8.35)

Indeed,

θ(η) = ∇2(η) = (pδ + α)(pδη + αη)
= pδ(pδη) + pδ(αη) + αpδη + α2η

= pδ(pδη) + pδαη + α2η

= (pδpδp+ pδα+ α2)(η) , (8.36)

since, by using pη = p and p2 = p, one has that

pδ(pδη) = pδ(pδ(pη))
= pδ(pδpη + pδη)
= pδpδpη − pδpδη + pδpδη
= pδpδpη . (8.37)

With any connection ∇ on the module E there is associated a dual con-
nection ∇′ on the dual module E ′. Notice first, that there is a pairing
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(·, ·) : E ′ × E −→ A , (φ, η) =: φ(η) , (8.38)

which, due to (4.22), with respect to the right-module structure on E ′ (and
taking A to be a ∗-algebra) has the following property

(φ · a, η · b) = a∗(φ, η)b , ∀ φ ∈ E ′, η ∈ E , a, b ∈ A . (8.39)

Therefore, it can be extended to maps

(·, ·) : E ′ ⊗A ΩA× E −→ A , (φ · α, η) = α∗(φ, η) ,
(·, ·) : E ′ × E ⊗A ΩA −→ A , (φ, η · β) = (φ, η)β , (8.40)

for any φ ∈ E ′; η ∈ E ; and α, β ∈ ΩA.
Let us suppose now that we have a connection ∇ on E . The dual connec-

tion
∇′ : E ′ → E ′ ⊗A Ω1A , (8.41)

is defined by

δ(φ, η) = −(∇′φ, η) + (φ,∇′η) , ∀ φ ∈ E ′, η ∈ E . (8.42)

It is easy to check the right-Leibniz rule

∇′(φ · a) = (∇′φ)a+ φ⊗A δa , ∀ φ ∈ E ′ , a ∈ A . (8.43)

Indeed, for any φ ∈ E ′, a ∈ A, and η ∈ E , by using (8.39), (8.42), (7.29) and
(8.40) respectively, we have

δ(φ · a, η) = −(∇′(φ · a), η) + (φ · a,∇′η)
δa∗(φ, η) + a∗δ(φ, η) = −(∇′(φ · a), η) + a∗(φ,∇′η)

δa∗(φ, η)− a∗δ(∇′φ, η) = −(∇′(φ · a), η)
−(δa)∗(φ, η)− a∗δ(∇′φ, η) = −(∇′(φ · a), η)

(φ⊗A δa, η) + ((∇′φ) · a, η) = (∇′(φ · a), η) , (8.44)

from which (8.43) follows.

8.3 Connections Compatible with Hermitian Structures

Suppose now that we have a Hermitian structure 〈·, ·〉 on the module E as
defined in Sect. 4.3. A connection ∇ on E is said to be compatible with the
Hermitian structure if the following condition is satisfied [34],

−〈∇η, ξ〉+ 〈η,∇ξ〉 = δ 〈η, ξ〉 , ∀ η, ξ ∈ E . (8.45)

Here the Hermitian structure is extended to linear maps (denoted with the
same symbol) : E ⊗A Ω1A× E → Ω1A and : Ω1A⊗A E × E → Ω1A by
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〈η ⊗A ω, ξ〉 = ω∗ 〈η, ξ〉 ,
〈η, ξ ⊗A ω〉 = 〈η, ξ〉ω , ∀ η, ξ ∈ E , ω ∈ Ω1A . (8.46)

Also, the minus sign on the left hand side of eq. (8.45) is due to the choice
(δa)∗ = −δa∗ which we have made in (7.29).

Compatible connections always exist. As explained in Sect. 4.3, any Her-
mitian structure on E = pAN can be written as 〈η, ξ〉 =

∑N
j=1 η

∗
j ξj with

η = pη = (η1, · · · , ηN ) and the same for ξ. Then the Grassman connection
(8.28) is compatible, since

δ 〈η, ξ〉 = δ(
N∑
j=1

η∗j ξj)

=
N∑
j=1

δη∗j ξj +
N∑
j=1

η∗j δξj = −
N∑
j=1

(δηj)∗ ξj +
N∑
j=1

η∗j δξj

= −〈δη, pξ〉+ 〈pη, δξ〉
= −〈pδη, ξ〉+ 〈η, pδξ〉
= −〈∇0η, ξ〉+ 〈η,∇0ξ〉 . (8.47)

For a general connection (8.34), the compatibility with the Hermitian struc-
ture reduces to

〈αη, ξ〉 − 〈η, αξ〉 = 0 , ∀ η, ξ ∈ E , (8.48)

which just says that the gauge potential is Hermitian,

α∗ = α . (8.49)

We still use the symbol CC(E) to denote the space of compatible universal
connections on E .

8.4 The Action of the Gauge Group

The group U(E) of unitary automorphisms of the module E , defined in (4.29)
plays the rôle of the infinite dimensional group of gauge transformations.
Indeed, there is a natural action of such a group on the space CC(E) of
universal compatible connections on E . It is given by

(u,∇) −→ ∇u =: u∇u∗ , ∀ u ∈ U(E), ∇ ∈ CC(E) . (8.50)

It is then straightforward to check that the curvature transforms in a covari-
ant way

(u, θ) −→ θu =: uθu∗ , (8.51)

since, evidently, θu = (∇u)2 = u∇u∗u∇u∗ = u∇2u∗ = uθu∗.
As for the gauge potential, one has the usual affine transformation
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(u, α) −→ αu =: upδu∗ + uαu∗ . (8.52)

Indeed, for any η ∈ E ,

∇u(η) = u(pδ + α)u∗η = upδ(u∗η) + uαu∗η
= pu(u∗δη) + up(δu∗ η) + uαu∗ using up = pu

= pδη + (upδu∗ + uαu∗)η
= (pδ + αu)η , (8.53)

which yields (8.52) for the transformed potential.

8.5 Connections on Bimodules

In constructing gravity theories one needs to introduce the analogues of linear
connections. These are connections defined on the bimodule of 1-forms which
plays the rôle of the cotangent bundle. Since this module is in fact a bimodule,
it seems natural to exploit both left and right module structures. In fact, to
discuss reality conditions and curvature invariants the bimodule structure is
crucial.

We refer to [66] for a theory of connection on central bimodules. An
alternative idea which has been proposed (in [123] for linear connections and
in [64] for the general case) is that of a ‘braiding’ which, by generalizing the
permutation of forms, flips two elements of a tensor product so as to make
possible a left Leibniz rule once a right Leibniz rule is satisfied.

Let E be an A-bimodule which is left and right projective, and endowed
with a right connection, i.e. a linear map ∇ : E → E ⊗A Ω1A which obeys
the right Leibniz rule (8.16).

Definition 21. Given a bimodule isomorphism,

σ : Ω1A⊗A E −→ E ⊗A Ω1A , (8.54)

the couple (∇, σ) is said to be compatible if and only if a left Leibniz rule of
the form

∇(aη) = a(∇η) + σ(δa⊗A η) , ∀ a ∈ A , η ∈ E . (8.55)

is satisfied.

We see that the rôle of the map σ is to bring the one form δa to the ‘right
place’. Notice that in general σ needs not square to the identity, σ ◦ σ 
= I.
In [64] σ is identified as the symbol of the connection.

To get a bigger space of connections a weaker condition has been proposed
in [51] where the compatibility condition has been required to be satisfied only
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on the center of the bimodule. We recall, first of all, that the center Z(E) of
a bimodule E is the bimodule defined by

Z(E) =: {η ∈ E | aη = ηa , ∀a ∈ A} . (8.56)

Now, let ∇L be a left connection, namely a linear map : E → Ω1A ⊗A E
satisfying the left Leibniz rule

∇L(aη) = a∇Lη + δa⊗A η , ∀ a ∈ A, η ∈ E . (8.57)

Likewise let ∇R be a right connection, i.e. a linear map : E → E ⊗A Ω1A
satisfying the right Leibniz rule

∇R(ηa) = (∇Rη)a+ η ⊗A δa , ∀ a ∈ A, η ∈ E. (8.58)

Definition 22. With σ a bimodule isomorphism as in (8.54), a pair (∇L,∇R)
is said to be σ-compatible if and only if

∇Rη = (σ ◦ ∇L)η , ∀ η ∈ Z(E) . (8.59)

By requiring that the condition ∇R = σ ◦ ∇L be satisfied on the whole bi-
module E , one can equivalently think of a pair (∇L,∇R) as a right connection
∇R fulfilling the additional left Leibniz rule (8.55) and so reproducing the
previously described situation.1

It should be mentioned that whereas Definition 21 is compatible with
tensor products over the algebra, Definition 22 does not enjoy this property.

Several examples of gravity and Kaluza-Klein theories which use the bi-
module structure of E = Ω1A have been constructed: see [116, 119] and
references therein.

In Chap. 10, we shall describe gravity theories which use only one struc-
ture (the right one, although it would be completely equivalent to use the
left one). In this context, the usual Einstein gravity has been obtained as a
particular case.

1 In [50] a connection on a bimodule is also defined as a pair consisting of a left
and right connection. There, however, there is no σ-compatibility condition while
the additional conditions of ∇L being a right A-homomorphism and ∇R being a
left A-homomorphism are imposed. These latter conditions, are not satisfied in
the classical commutative case where Z(E) = E = Ω1(M).
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In this section we shall describe how to construct field theoretical models in
the algebraic noncommutative framework developed by Connes. Throughout
this Section, the basic ingredient will be a spectral triple (A,H, D) of dimen-
sion n. Associated with it there is the algebra ΩDA = ⊕pΩ

p
DA of forms, with

exterior differential d, as constructed in Sect. 7.2.

9.1 Yang-Mills Models

The theory of connections on any (finite projective) A-module E , with respect
to the differential calculus (ΩDA, d) is, mutatis mutandis, formally the same
as the theory of universal connections developed in Sect. 8.2.

Definition 23. A connection on the A-module E is a C-linear map

∇ : E ⊗A Ω
p
DA −→ E ⊗A Ω

p+1
D A , (9.1)

satisfying the Leibniz rule

∇(ωρ) = (∇ω)ρ+ (−1)pωdρ , ∀ ω ∈ E ⊗A Ω
p
DA , ρ ∈ ΩDA . (9.2)

The composition ∇2 = ∇◦∇ : E ⊗AΩ
p
DA → E⊗AΩ

p+2
D A is ΩDA-linear and

its restriction to E is the curvature F : E → E ⊗A Ω2
DA of the connection.

The curvature is A linear, F (ηa) = F (η)a, for any η ∈ E , and a ∈ A, and
satisfies,

∇2(η ⊗A ρ) = F (η)ρ , ∀ η ∈ E , ρ ∈ ΩDA . (9.3)

As was mentioned before, connections always exist on a projective module.
If E = pAN , it is possible to write any connection as

∇ = pd+A , (9.4)

where A is any element in EndAE ⊗A Ω1
DA ' MA(A) ⊗A Ω1

DA such that
A = Ap = pA = pAp. The matrix of 1-forms A is called the gauge potential
of the connection ∇. For the corresponding curvature F we have

F = pdA+A2 + pdpdp . (9.5)

G. Landi: LNPm 51, pp. 133–150, 2002.
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The space C(E) of all connections on E is an affine space modelled on the
space EndAE ⊗A Ω1

DA.
The compatibility of the connection ∇ with respect to a Hermitian struc-

ture on E is expressed exactly as in Sect. 8.3,

−〈∇η, ξ〉+ 〈η,∇ξ〉 = d 〈η, ξ〉 , ∀ η, ξ ∈ E . (9.6)

As before, the Hermitian structure is extended to linear maps

E ⊗A Ω1
DA× E → Ω1

DA , 〈η ⊗A ω, ξ〉 = ω∗ 〈η, ξ〉 ,
Ω1
DA⊗A E × E → Ω1

DA , 〈η, ξ ⊗A ω〉 = 〈η, x〉ω ,
∀ η, ξ ∈ E , ω ∈ Ω1

DA . (9.7)

The connection (9.4) is compatible with the Hermitian structure 〈η, ξ〉 =∑N
j=1 η

∗
j ξj on E = pAN (η = (η1, · · · , ηN ) = pη and the same for ξ), provided

the gauge potential is Hermitian,

A∗ = A . (9.8)

The action of the group U(E) of unitary automorphisms of the module E
on the space C(E) of compatible connections on E is given by

(u,∇) −→ ∇u =: u∇u∗ , ∀ u ∈ U(E), ∇ ∈ C(E) . (9.9)

Hence, the gauge potential and the curvature transform in the usual way

(u,A) −→ Au = u[pd+A]u∗ , (9.10)
(u, F ) −→ Fu =: uFu∗ , ∀ u ∈ U(E). (9.11)

The following proposition clarifies in which sense the connections defined
in 20 are universal.

Proposition 45. The representation π in (7.37) can be extended to a sur-
jective map

I⊗ π : CC(E) −→ C(E) ; (9.12)

consequently, any compatible connection is the composition of π with a uni-
versal compatible connection.

Proof. By construction, π is a surjection from Ω1A to π(Ω1A) ' Ω1
DA. Then,

we get a surjection I⊗π : EndAE⊗AΩ1A → EndAE⊗AΩ1
DA. Finally, define

I⊗ π(p ◦ δ) = p ◦ d to get the desired surjection : CC(E) −→ C(E).

By using the Hermitian structure on E together with an ordinary matrix
trace over ‘internal indices’, one can construct an inner product on EndAE .
By combining this product with the inner product on Ω2

DA given in (7.92),
one then obtains a natural inner product 〈 , 〉2 on the space EndAE⊗AΩ2

DA.
Since the curvature F is an element of such a space, the following definition
makes sense.
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Definition 24. The Yang-Mills action for the connection ∇ with curvature
F is given by

YM(∇) = 〈F, F 〉2 . (9.13)

By its very construction it is invariant under the gauge transformations of
(9.10) and (9.11).

Consider now the tensor product E ⊗AH. This space can be promoted to
a Hilbert space by combining the Hermitian structure on E with the scalar
product on H,

(η1⊗Aψ1, η2⊗Aψ2) =: (ψ1, 〈η1, η2〉ψ2) , ∀ η1, η2 ∈ E , ψ1, ψ2 ∈ H . (9.14)

By using the projection (7.37) we get a projection

IE ⊗ π : E ⊗A ΩDA −→ B(E ⊗A H) , (9.15)

and an inner product on (IE ⊗ π)(E ⊗A ΩpA) given by

〈T1, T2〉p = trωT
∗
1 T2|IE ⊗D|−n , (9.16)

which is the analogue of the inner product (7.92). The corresponding orthog-
onal projector P has a range which can be identified with E ⊗A Ω

p
DA.

If ∇un ∈ CC(E) is any universal connection with curvature θun, one
defines a pre-Yang-Mills action I(∇un) by,

I(∇un) = trωπ(θun)2|I⊗D|−n . (9.17)

One has the analogue of proposition (41).

Proposition 46. For any compatible connection ∇ ∈ C(E), one has that

YM(∇) = inf{I(∇un) | π(∇un) = ∇} . (9.18)

Proof. The proof is analogous to that of Proposition 41.

It is also possible to define a topological action and extend the usual
inequality between Chern classes of vector bundles and the value of the Yang-
Mill action on an arbitrary connection on the bundle. First observe that, from
definition (9.13) of the Yang-Mills action functional, if D is replaced by λD,
then YM(∇) is replaced by |λ|4−nYM(∇). Therefore, it has a chance of being
related to ‘topological invariants’ of finite projective modules only if n = 4.
Let us then assume that our spectral triple is four dimensional. We also need
it to be even with a Z2 grading Γ . With these ingredients, one defines two
traces on the algebra Ω4A,

τ(a0δa1 · · · δa4) = trw(a0[D, a1] · · · [D, a1]|D|−4) , aj ∈ A
Φ(a0δa1 · · · δa4) = trw(Γa0[D, a1] · · · [D, a1]|D|−4) , aj ∈ A . (9.19)
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By using the projection (9.15) and an ‘ordinary trace over internal indices’
and by substituting Γ with IE ⊗ Γ and |D|−4 with IE ⊗ |D|−4, the previous
traces can be extended to traces τ̃ and Φ̃ on EndAE ⊗A Ω4A. Then, by the
definition (9.17), one has that

I(∇un) = τ̃(θ2un) , ∀ ∇un ∈ CC(E) , (9.20)

with θun the curvature of ∇un. Furthermore, since the operator IE ± Γ is
positive and anticommutes with π(Ω4A),1 one can establish an inequality
[34]

τ̃(θ2un) ≥ |Φ̃(θ2un)| , ∀ ∇un ∈ CC(E) . (9.21)

In turn, by using (9.20) and (46), one gets the inequality

YM(∇) ≥ |Φ̃(θ2un)| , π(∇un) = ∇ . (9.22)

It turns out that Φ̃(θ2un) is a closed cyclic cocycle and its topological
interpretation in terms of topological invariants of finite projective modules
follows from the pairing between K-theory and cyclic cohomology. Indeed,
the value of Φ̃ does not depend on the particular connection and one could
evaluate it on the curvature θ0 = pdpdp of the Grassmannian connection.
Moreover, it depends only on the stable isomorphism class [p] ∈ K0(A).
We refer to [34] for details. In the next section, we shall show that for the
canonical triple over an ordinary four dimensional manifold, the term Φ̃(θ2un)
reduces to the usual topological action.

9.1.1 Usual Gauge Theory

For simplicity we shall consider the case when n = 4. For the canonical
triple (A,H, D, Γ ) over the (four dimensional) manifold M , as described in
Sect. 6.5, consider a matrix A of usual 1-forms and a universal connection
∇ = pδ + α such that σ1(π(α)) = γ(A). Then P (π(θ)) = P (π(δα + α2)) =
γ(F ) with F = dMA+A∧A. On making use of eq. (7.96), with an additional
matrix trace over the ‘internal indices’, we get

YM(A) = inf{I(α) | π(α) = A}
=

1
8π2

∫
M

||F ||2dx . (9.23)

This is the usual Yang-Mills action for the gauge potential A.
More explicitly, let α =

∑
j fjδgj . Then, we have

π(α) = γµAµ , Aµ =
∑
j

fj∂µgj ,

P (π(δα+ α2)) = γµνFµν , γµν =
1
2

(γµγν − γνγµ) . (9.24)
1 We recall that Γ commutes with elements of A and anticommutes with D.
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By using the trace theorem 31 again, (with an additional matrix trace Tr
over the ‘internal indices’) one gets

YM(A) =:
1

8π2

∫
M

tr(γµνγρσ)Tr(FµνFρσ)dx

=:
1

8π2

∫
M

gµσgνρTr(FµνFρσ)dx

=:
1

8π2

∫
M

Tr(F ∧ ∗F ) . (9.25)

With the same token, we get for the topological action

Top(A) =:
1

8π2

∫
M

tr(Γγµνγρσ)Tr(FµνFρσ)dx

=: − 1
8π2

∫
M

εµνρσTr(FµνFρσ)dx

=: − 1
8π2

∫
M

Tr(F ∧ F ) , (9.26)

which is the usual topological action.
Here we have used the following (normalized) traces of gamma matrices

tr(γµγνγργσ) = (gµνgρσ − gµρgνσ + gµσgνρ) (9.27)
tr(Γγµγνγργσ) = −εµνρσ . (9.28)

9.1.2 Yang-Mills on a Two-Point Space

We shall first study all modules on the two-point space Y = {1, 2} described
in Sect. 6.7. The associated algebra is A = C ⊕ C. The generic module E
will be of the form E = pAn1 , with n1 a positive integer, and p a n1 × n1
idempotent matrix with entries in A. The most general such idempotent can
be written as a diagonal matrix of the form

p = diag[(1, 1), · · · , (1, 1)︸ ︷︷ ︸
n1

, (1, 0), · · · , (1, 0)︸ ︷︷ ︸
n1−n2

] , (9.29)

with n2 ≤ n1. Therefore, the module E can be thought of as n1 copies of C

on the point 1 and n2 copies of C on the point 2,

E = Cn1 ⊕ Cn2 . (9.30)

The module is trivial if and only if n1 = n2. There is a topological number
which measures the triviality of the module and that, in this case, turns out to
be proportional to n1−n2. From eq. (9.5), the curvature of the Grassmannian
connection on E is just F0 = pdpdp. The aforementioned topological number
is then
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c(E) =: trΓF 2
0 = trΓ (pdpdp)2 = trΓp(dp)4 . (9.31)

Here Γ is the grading matrix given by (6.77) and, as the spectral triple is
0-dimensional, the Dixmier trace reduces to an ordinary trace.2 This is really
the same as the topological action Φ(θ2un) encountered in Sect. 9.1. It takes
a little algebra to find that, for a module of the form (9.30), one has

c(E) = tr(M∗M)4(n1 − n2) , (9.32)

where M is the matrix appearing in the corresponding operator D as in
(6.76).

Let us now turn to gauge theories. First recall that from the analysis of
Sect. 7.2.2 there are no junk forms and that Connes’ forms are the images
of universal forms through π, ΩDA = π(ΩA) with π injective. We shall
consider the simple case of a ‘trivial 1-dimensional bundle’ over Y , namely
we shall take as the module of sections just E = A. A vector potential is then
a self-adjoint element A ∈ Ω1

DA and is determined by a complex number
Φ ∈ C,

A =
[

0 ΦM∗

ΦM 0

]
. (9.33)

If α is the universal form such that π(α) = A, then

α = −Φeδe− Φ(1− e)δ(1− e) , (9.34)

and its curvature is

δα+ α2 = −(Φ+ Φ+ |Φ|2)δeδe . (9.35)

Finally, the Yang-Mills curvature turns out to be

YM(A) =: trπ(δα+ α2)2 = 2tr(M∗M)2 (|Φ+ 1|2 − 1)2 . (9.36)

The gauge group U(E) is the group of unitary elements ofA, namely the group
U(E) = U(1) × U(1). Its elements can be represented as diagonal matrices.
Indeed, for u ∈ U(1)× U(1),

u =
[
u1 0
0 u2

]
, |u1|2 = 1 , |u2|2 = 1 . (9.37)

Its action, Au = uAu∗+udu∗, on the gauge potential results in multiplication
by u∗1u2 on the variable Φ+ 1,

(Φ+ 1)u = (Φ+ 1)u∗1u2 , (9.38)

and the action (9.36) is gauge invariant.

2 In fact, in (9.31), Γ is really I⊗ Γ .
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We see that in this example the action, YM(A), reproduces the usual situa-
tion of broken symmetry for the ‘Higgs field’ Φ + 1 : there is a S1-worth of
minima which are acted upon nontrivially by the gauge group. This fact has
been used in [47] in a reconstruction of the Standard Model. The Higgs field
has a geometrical interpretation: it is the component of a gauge connection
along an ‘internal’ discrete direction made up of two points.3

9.2 The Bosonic Part of the Standard Model

There are excellent review papers on the derivation of the Standard Model
using noncommutative geometry. In particular one should consult [152, 118]
and [99] and we do not feel the need to add more to these. Rather we shall
only give an overview of the main features. Here we limit ourselves to the
bosonic content of the model while postponing to the following sections the
description of the fermionic part.

In [47], Connes and Lott computed the Yang-Mills action YM(∇) for a
space which is the product of a Riemannian spin manifold M by a ‘discrete’
internal space Y consisting of two points. One constructs the product, as
described in Sect. 6.9, of the canonical triple (C∞(M), L2(M,S), DS , Γ5) on
a Riemannian four dimensional spin manifold with the finite zero dimensional
triple (C ⊕ C,H1 ⊕ H2, DF ) described in Sects. 6.7 and 9.1.2. The product
triple is then given by

A =: C∞(M)⊗ (C⊕ C) ' C∞(M)⊕ C∞(M) ,
H =: L2(M,S)⊗ (H1 ⊕H2) ' L2(M,S)⊗H1 ⊕ L2(M,S)⊗H2 ,

D =: DS ⊗ I + Γ5 ⊗DF . (9.39)

A nice feature of the model is that one has a geometric interpretation of the
Higgs field which appears as the component of the gauge field in the internal
direction. Geometrically one has a space M ×Y with two sheets which are at
a distance of the order of the inverse of the mass scale of the theory (which
appears in the operator DF for the finite part as the parameter M). The
differentiation in the space M × Y consists of differentiation on each copy
of M together with a finite difference operation in the Y direction. A gauge
potential A decomposes as a sum of an ordinary differential part A(1,0) and
a finite difference part A(0,1) which turns out to be the Higgs field.

To get the full bosonic standard model one has to take for the finite part
the algebra [35]

AF = C⊕H⊕M3(C) , (9.40)
3 One should mention that the first noncommutative extension of classical gauge
theories in which the Higgs fields appear as components of the gauge connec-
tion in the ‘noncommutative directions’ was produced in the framework of the
derivation based calculus [62].



140 9 Field Theories on Modules

where H is the algebra of quaternions. The unitary elements of this algebra
form the group U(1) × SU(2) × U(3). The finite Hilbert space HF is the
fermion space of leptons, quarks and their antiparticles HF = H+

F ⊕ H−
F =

H+
; ⊕H+

q ⊕H−
;
⊕H−

q . As for the finite Dirac operator DF is given by

DF =
[
Y 0
0 Y

]
, (9.41)

with Y an off-diagonal matrix which contains the Yukawa couplings. The real
structure JF defined by

JF

(
ξ
η

)
=
(
η

ξ

)
, ∀ (ξ, η) ∈ H+

F ⊕H−
F , (9.42)

exchanges fermions with antifermions and it is such that

J2
F = I ,

ΓFJF + JFΓF = 0 ,
DFJF − JFDF = 0 . (9.43)

Next, one defines an action of the algebra (9.40) so as to meet the other
requirements in the Definition 16 of a real structure. For the details on this
we refer to [35, 118] as well as for the details on the construction of the full
bosonic Standard Model action starting from the Yang-Mills action YM(∇)
on a ‘rank one trivial’ module associated with the product geometry

A =: C∞(M)⊗AF ,

H =: L2(M,S)⊗HF ,

D =: DS ⊗ I + Γ5 ⊗DF . (9.44)

The product triple has a real structure given by

J = C ⊗ JF , (9.45)

with C the charge-conjugation operation on L2(M,S) and JF the real struc-
ture of the finite geometry.
The final model has problems, notably unrealistic mass relations [118] and a
disturbing fermion doubling [113]. It is worth mentioning that while the stan-
dard model can be obtained from noncommutative geometry, most models of
the Yang-Mills-Higgs type cannot [145, 90, 112].

9.3 The Bosonic Spectral Action

Recently, in [38, 37], Connes has proposed a new interpretation of gauge
degrees of freedom as the ‘inner fluctuations’ of a noncommutative geom-
etry. These fluctuations replace the operator D, which gives the ‘external
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geometry’, by D + A + JAJ∗, where A is the gauge potential and J is the
real structure. In fact, there is also a purely geometrical (spectral) action,
depending only on the spectrum of the operator D, which, for a suitable al-
gebra (noncommutative geometry of the Standard Model) gives the Standard
Model Lagrangian coupled to gravity.

Firstly, we recall that if M is a smooth (paracompact) manifold, then
the group Diff(M) of diffeomorphisms of M , is isomorphic with the group
Aut(C∞(M)) of (∗-preserving) automorphisms of the algebra C∞(M) [1].
Here Aut(C∞(M)) is the collection of all invertible, linear maps α from
C∞(M) into itself such that α(fg) = α(f)α(g) and α(f∗) = (α(f))∗, for
any f, g ∈ C∞(M); Aut(C∞(M)) is a group under map composition. The
relation between a diffeomorphism ϕ ∈ Diff(M) and the corresponding
automorphism αϕ ∈ Aut(C∞(M)) is via pull-back

αϕ(f)(x) =: f(ϕ−1(x)) , ∀ f ∈ C∞(M) , x ∈M . (9.46)

If A is any noncommutative algebra (with unit) one defines the group
Aut(A) exactly as before and ϕ(I) = I, for any ϕ ∈ Aut(A). This group is
the analogue of the group of diffeomorphism of the (virtual) noncommutative
space associated with A. Now, with any element u of the unitary group U(A)
of A, U(A) = {u ∈ A , uu∗ = u∗u = I}, there is an inner automorphism
αu ∈ Aut(A) defined by

αu(a) = uau∗ , ∀ a ∈ A . (9.47)

One can easily convince oneself that αu∗ ◦ αu = αu ◦ αu∗ = IAut(A),
for any u ∈ U(A). The subgroup Inn(A) ⊂ Aut(A) of all inner auto-
morphisms is a normal subgroup. First of all, any automorphism will pre-
serve the group of unitaries in A. If u ∈ U(A) and ϕ ∈ Aut(A), then
ϕ(u)(ϕ(u))∗ = ϕ(u)ϕ(u∗) = ϕ(uu∗) = ϕ(I) = I; analogously (ϕ(u))∗ϕ(u) = I

and ϕ(u) ∈ U(A). Furthermore,

αϕ(u) = ϕ ◦ αu ◦ ϕ−1 ∈ Inn(A) , ∀ ϕ ∈ Aut(A) , αu ∈ Inn(A) . (9.48)

Indeed, with a ∈ A, for any ϕ ∈ Aut(A) and αu ∈ Inn(A) one finds

αϕ(u)(a) = ϕ(u)aϕ(u∗)

= ϕ(u)ϕ(ϕ−1(a)ϕ(u∗)
= ϕ(uϕ−1(a)u∗)
= (ϕ ◦ αu ◦ ϕ−1)(a) , (9.49)

from which one gets (9.48).
We denote by Out(A) =: Aut(A)/Inn(A) the outer automorphisms. There
is a short exact sequence of groups

IAut(A) −→ Inn(A) −→ Aut(A) −→ Out(A) −→ IAut(A) . (9.50)
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For any commutative A (in particular for A = C∞(M)) there are no non-
trivial inner automorphisms and Aut(A) ≡ Out(A) (in particular Aut(A) ≡
Out(A) ' Diff(M)).

The interpretation that emerges is that the group Inn(A) will give ‘in-
ternal’ gauge transformations while the group Out(A) will provide ‘external’
diffeomorphisms. In fact, gauge degrees of freedom are the ‘inner fluctuations’
of the noncommutative geometry. This is due to the following beautiful fact.
Consider the real triple (A,H, π,D), where we have explicitly indicated the
representation π of the algebra A on the Hilbert space H. The real structure
is provided by the antilinear isometry J with properties as in Definition 16.
Any inner automorphism αu ∈ Inn(A) will produce a new representation
πu =: π ◦ αu of A in H. It turns out that the replacement of the representa-
tion is equivalent to the replacement of the operator D by

Du = D +A+ ε′JAJ∗ , (9.51)

where A = u[D,u∗] and ε′ = ±1 from (6.80) according to the dimension of
the triple. If the dimension is four, then ε′ = 1; in what follows we shall limit
ourselves to this case, the generalization being straightforward.
This result is so important and beautiful that we shall restate it as a Propo-
sition.

Proposition 47. For any inner automorphism αu ∈ Inn(A), with u unitary,
the triples (A,H, π,D, J) and (A,H, π ◦ αu, D + u[D,u∗] + Ju[D,u∗]J∗, J)
are equivalent, the intertwining unitary operator being given by

U = uJuJ∗ . (9.52)

Proof. Note first that

UJU∗ = J . (9.53)

Indeed, by using the properties, from the Definition 16, of a real structure,
we have,

UJU∗ = uJuJ∗JJu∗J∗u∗

= ±uJuJ∗u∗J∗u∗

= ±JuJ∗uu∗J∗u∗

= J . (9.54)

Furthermore, by dropping again the symbol π, we have to check that

UaU∗ = αu(a) , ∀ a ∈ A , (9.55)
UDU∗ = Du . (9.56)
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As for (9.55), for any a ∈ A we have,

UaU∗ = uJuJ∗aJu∗J∗u∗

= uJuJ∗Ju∗J∗au∗ by 2a. in Definition 16
= uau∗

= αu(a) , (9.57)

which proves (9.55). Next, by using properties 1b. and 2a., 2b. of Definition 16
(and their analogues with J and J∗ exchanged) the left hand side of (9.56)
is given by

UDU∗ = uJuJ∗DJu∗J∗u∗

= uJuDu∗J∗u∗

= uJu(u∗D + [D,u∗])J∗u∗

= uJDJ∗u∗ + uJu[D,u∗]J∗u∗

= uDu∗ + JJ∗uJu[D,u∗]J∗u∗

= u(u∗D + [D,u∗]) + JuJ∗uJ [D,u∗]J∗u∗

= D + u[D,u∗] + Ju[D,u∗]J∗uJJ∗u∗

= D + u[D,u∗] + Ju[D,u∗]J∗ ,
(9.58)

and (9.56) is proven.

The operator Du is interpreted as the product of the perturbation of the
‘geometry’ given by the operator D, by ‘internal gauge degrees of freedom’
given by the gauge potential A = u∗[D,u]. A general internal perturbation of
the geometry is provided by

D �→ DA = D +A+ JAJ∗ , (9.59)

where A is an arbitrary gauge potential, namely an arbitrary Hermitian op-
erator, A∗ = A, of the form

A =
∑
j

aj [D, bj ] , aj , bj ∈ A . (9.60)

Before proceeding, let us observe that for commutative algebras, the in-
ternal perturbation A+JAJ∗ of the metric in (9.59) vanishes. From what we
said after Definition 16, for commutative algebras one can write a = Ja∗J∗

for any a ∈ A, which amounts to identifying the left multiplicative action by a
with the right multiplicative action by Ja∗J∗ (always possible if A is commu-
tative). Furthermore, D is a differential operator of order 1, i.e. [[D, a], b]] = 0
for any a, b ∈ A. Then, with A =

∑
j aj [D, bj ], A

∗ = A, we get
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JAJ∗ =
∑
j

Jaj [D, bj ]J∗ =
∑
j

JajJJ
∗[D, bj ]J∗

=
∑
j

a∗jJ [D, bj ]J∗ =
∑
j

a∗j [D, JbjJ∗]

=
∑
j

a∗j [D, b∗j ] =
∑
j

[D, b∗j ]a∗j

= −(aj
∑
j

[D, bj ])∗ = −A∗ , (9.61)

and, in turn,
A+ JAJ∗ = A−A∗ = 0 . (9.62)

The dynamics of the coupled gravitational and gauge degrees of freedom is
governed by a spectral action principle. The action is a ‘purely geometric’ one
depending only on the spectrum of the self-adjoint operator DA [38, 37, 26],

SB(D,A) = trH(χ(
D2

A

Λ2 )) . (9.63)

Here trH is the usual trace in the Hilbert space H, Λ is a ‘cut off parameter’
and χ is a suitable function which cuts off all eigenvalues of D2

A larger than
Λ2.

The computation of the action (9.63) is conceptually simple although
technically it may be involved. One has just to compute the square of the
Dirac operator with Lichnérowicz’ formula [11] and the trace with a suitable
heat kernel expansion [83], to get an expansion in terms of powers of the
parameter Λ. The action (9.63) is interpreted in the framework of Wilson’s
renormalization group approach to field theory: it gives the bare action with
bare coupling constants. There exists a cut off scale ΛP which regularizes the
action and where the theory is geometric. The renormalized action will have
the same form as the bare one with bare parameters replaced by physical
parameters [26].
In fact, a full analysis is rather complicated and there are several caveats [74].

In Chap. 10 we shall work out in detail the action for the usual gravi-
tational sector while here we shall indicate how to work it out for a generic
gauge field and in particular for the bosonic sector of the standard model.
We first proceed with the ‘mathematical aspects’.

Proposition 48. The spectral action (9.63) is invariant under the gauge ac-
tion of the inner automorphisms given by

A �→ Au =: uAu∗ + u[D,u∗] , ∀ u ∈ Inn(A) . (9.64)



9.3 The Bosonic Spectral Action 145

Proof. The proof amounts to showing that

DAu = UDAU
∗ , (9.65)

with U the unitary operator in (9.52), U = uJuJ∗. Now, given (9.64), it
turns out that

DAu =: D +Au + JAuJ∗

= D + u[D,u∗] + J [D,u∗]J∗ + uAu∗ + JuAu∗J∗

= Du + uAu∗ + JuAu∗J∗. (9.66)

In Proposition 47 we have already proven that Du = UDU∗, eq.( 9.56).
To prove the rest, remember that A is of the form A =

∑
j aj [D, bj ] with

aj , bj ∈ A. But, from properties 2a. and 2b. of Definition 16, it follows that
[A, Jc∗J∗] = 0, for any c ∈ A. By using this fact and properties 2a. and 2b. of
Definition 16 (and their analogues with J and J∗ exchanged) we have that,

UAU∗ = uJuJ∗AJu∗J∗u∗

= uJuJ∗Ju∗J∗Au∗

= uAu∗ . (9.67)

U(JAJ∗)U∗ = uJuJ∗JAJ∗Ju∗J∗u∗

= uJuAu∗J∗u∗JJ∗

= uJuAJ∗u∗Ju∗J∗

= uJuJ∗u∗JAu∗J∗

= JuJ∗uu∗JAu∗J∗

= JuAu∗J∗ . (9.68)

The two previous results together with ( 9.56) prove eq. (9.65) and, in turn,
the proposition.

We spend a few words on the rôle of the outer automorphisms. It turns
out that the spectral action (9.63) is not invariant under the full Out(A) but
rather only under the subgroup Out(A)+ of ‘unitarily implementable’ ele-
ments of Out(A) [39]. Indeed, given any element α ∈ Out(A), by composition
with the representation π of A in H, one gets an associated representation

πα =: π ◦ α : A → B(H) . (9.69)

The group Out(A)+ is made of elements α ∈ Out(A) for which there exists
a unitary operator Uα on H such that,

πα = UαπU
∗
α . (9.70)

For the canonical triple on a manifold M , the group Out(A)+ can be
identified with Diff(M). We have already mentioned that for A = C∞(M)
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one has that Aut(A) ≡ Out(A) ' Diff(M), the last identification being
given by pull-back, as in (9.46). We recall now that H is the Hilbert space
H = L2(M,S; dµ(g)) of square integrable spinors, the measure dµ(g) being
the canonical Riemannian one associated with the metric g on M . Given an
element ϕ ∈ Diff(M), one defines a unitary operator Uϕ on H by [79],

(Uϕψ)(x) =:
[
ϕ∗dµ(g)(x)
dµ(g)(x)

] 1
2

ψ(ϕ−1(x)) , ∀ ψ ∈ H . (9.71)

The unitarity of Uϕ follows from the invertibility of ϕ and the quasi-invariance
of the measure dµ(g) under diffeomorphisms. For any f ∈ C∞(M) it is
straightforward to check that (by dropping the symbol π)

Uϕ f U
∗
ϕ = f ◦ ϕ−1 =: αϕ(f) , (9.72)

i.e. one reproduces (9.70).

In the usual approach to gauge theories, one constructs connections on a
principal bundle P →M with a finite dimensional Lie group G as structure
group. Associated with this bundle there is a sequence of infinite dimensional
(Hilbert-Lie) groups which looks remarkably similar to the sequence (9.50)
[14, 148],

I −→ G −→ Aut(P ) −→ Diff(M) −→ I . (9.73)

Here Aut(P ) is the group of automorphisms of the total space P , namely
diffeomorphisms of P which commute with the action of G, and G is the
subgroup of vertical automorphisms, identifiable with the group of gauge
transformations, G ' C∞(M,G).
Thus, here is the recipe to construct a spectral gauge theory corresponding
to the structure group G or equivalently to the gauge group G [26]:

1. look for an algebra A such that Inn(A) ' G;
2. construct a suitable spectral triple ‘over’ A;
3. compute the spectral action (9.63).

The result will be a gauge theory of the group G coupled with the gravity of
the diffeomorphism group Out(A) (with additional extra terms).

For the standard model we have G = U(1)×SU(2)×SU(3). It turns out
that the relevant spectral triple is the one given in (9.44), (9.45). In fact, as
already mentioned in Sect. 9.2, for this triple the structure group would be
U(1) × SU(2) × U(3); however the computation of A + JAJ∗ removes the
extra U(1) part from the gauge fields. The associated spectral action has been
computed in [26] and in full detail in [89]. The result is the Yang-Mill-Higgs
part of the standard model coupled with Einstein gravity plus a cosmological
term, a Weyl gravity term and a topological term. Unfortunately the model
still suffers from the problems alluded to at the end of Sect. 9.2: namely
unrealistic mass relations and an unphysical fermion doubling.
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9.4 Fermionic Models

It is also possible to construct the analogue of a gauged Dirac operator by a
‘minimal coupling’ recipe and to produce an associated action.

If we have a gauge theory on the trivial module E = A, as in Sec. 8.1, then
a gauge potential is just a self-adjoint element A ∈ Ω1

DA which transforms
under the unitary group U(A) by (8.5),

(A, u) −→ Au = uAu∗ + u[D,u∗] , ∀ u ∈ U(A) . (9.74)

The following expression is gauge invariant,

IDir(A,ψ) =: 〈ψ, (D +A)ψ〉 , ∀ ψ ∈ Dom(D) ⊂ H , A ∈ Ω1
DA , (9.75)

where the action of the group U(A) on H is by restriction of the action of A.
Indeed, for any ψ ∈ H, one has that

(D +Au)uψ = (D + u[D,u∗] + uAu∗)uψ
= D(uψ) + u(Du∗ − u∗D)(uψ) + uAψ
= uDu∗(uψ) + uAψ
= u(D +A)ψ , (9.76)

from which the invariance of (9.75) follows.
The generalization to any finite projective module E over A endowed with

a Hermitian structure, needs extra care but it is straightforward. In this case
one considers the Hilbert space E ⊗AH of ‘gauged spinors’ introduced in the
previous section with the scalar product given in (9.14). The action of the
group EndA(E) of endomorphisms of E extends to an action on E ⊗A H by

φ(η ⊗ ψ) =: φ(η)⊗ ψ , ∀ φ ∈ EndA(E) , η ⊗ ψ ∈ E ⊗A H . (9.77)

In particular, the unitary group U(E) yields a unitary action on E ⊗A H,

u(η ⊗ ψ) =: u(η)⊗ ψ , u ∈ U(E) , η ⊗ ψ ∈ E ⊗A H , (9.78)

since

(u(η1 ⊗ ψ1), u(η2 ⊗ ψ2)) = (ψ1, 〈u(η1), u(η2)〉ψ2)
= (ψ1, 〈η1, η2〉ψ2)
= (η1 ⊗ ψ1, η2 ⊗ ψ2) ,

∀ u ∈ U(E) , ηi ⊗ ψi ∈ E ⊗A H , i = 1, 2 . (9.79)

If ∇ : E → E ⊗A Ω1
DA is a compatible connection on E , the associated

‘gauged Dirac operator’ D∇ on the Hilbert space E ⊗A H is defined by

D∇(η ⊗ ψ) = η ⊗Dψ + ((I⊗ π)∇unη)ψ , η ∈ E , ψ ∈ H , (9.80)

where ∇un is any universal connection on E which projects onto ∇.
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If E = pAN , and ∇un = pδ+α, then the operator in (9.80) can be written
as

D∇ = pD + π(α) , (9.81)

with D acting component-wise on AN ⊗H. Since π(α) is a self-adjoint oper-
ator, from (9.81), we see that D∇ is a self-adjoint operator on E ⊗A H with
domain E ⊗ADomD. Furthermore, since any two universal connections pro-
jecting on ∇ differ by α1 − α2 ∈ kerπ, the right-hand side of (9.80) depends
only on ∇. Notice that one cannot directly write (∇η)ψ since ∇η is not an
operator on E ⊗A H.

Proposition 49. The gauged Dirac action

IDir(∇, Ψ) =: 〈Ψ,D∇Ψ〉 , ∀ Ψ ∈ E ⊗A DomD , ∇ ∈ C(E) , (9.82)

is invariant under the action (9.78) of the unitary group U(E).

Proof. The proof goes along the same lines of that of (9.76).
For any Ψ ∈ E ⊗A H, one has that

(pD + π(αu))uΨ = (pD + π(uδu∗ + uαu∗))uΨ
= pD(uΨ) + u(Du∗ − u∗D)(uΨ) + uπ(α)Ψ
= pD(uΨ) + pu(Du∗ − u∗D)(uΨ) + uπ(α)Ψ
= puDu∗(uΨ) + uπ(α)Ψ
= upDu∗(uΨ) + uπ(α)Ψ
= u(pD + π(α))Ψ , (9.83)

which implies the invariance of (9.82).

9.4.1 Fermionic Models on a Two-Point Space

As a very simple example, we shall construct the fermionic Lagrangian (9.75)
on the two-point space Y studied in Sects. 6.7 and 9.1.2,

IDir(A,ψ) =: 〈ψ, (D +A)ψ〉 , ∀ ψ ∈ Dom(D) ⊂ H , A ∈ Ω1
DA . (9.84)

As we have seen in Sect. 6.7, the finite dimensional Hilbert space H is a direct
sum H = H1 ⊕H2 and the operator D is an off-diagonal matrix

D =
[

0 M∗

M 0

]
, M ∈ Lin(H1,H2) . (9.85)

In this simple example Dom(D) = H. On the other hand, a generic gauge
potential on the trivial module E = A is given by (9.33),

A =
[

0 ΦM∗

ΦM 0

]
, Φ ∈ C . (9.86)
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Summing up, the gauged Dirac operator is the matrix

D +A =
[

0 (1 + Φ)M∗

(1 + Φ)M 0

]
, (9.87)

which gives for the action IDir(A,ψ) a Yukawa-type term coupling the fields
(1 +Φ) and ψ. This action is invariant under the gauge group U(E) = U(1)×
U(1).

9.4.2 The Standard Model

Let us now put together the Yang-Mills action (9.13) with the fermionic one
in (9.82),

I(∇, Ψ) = YM(∇) + IDir(∇, Ψ)
= 〈F∇, F∇〉2 + 〈Ψ,D∇Ψ〉 , ∀ ∇ ∈ C(E) ,

Ψ ∈ E ⊗A DomD .
(9.88)

Consider the canonical triple (A,H, D) on a Riemannian spin manifold.
By taking E = A, the action (9.88) is just the Euclidean action of massless
quantum electrodynamics. If E = AN , the action (9.88) is the Yang-Mills
action for U(N) coupled with a massless fermion in the fundamental repre-
sentation of the gauge group U(N) [35].

In [47], the action (9.88) was computed for a product space of a Rieman-
nian spin manifold M with a ‘discrete’ internal space Y consisting of two
points. The result is the full Lagrangian of the standard model. An improved
version which uses a real spectral triple and obtained by means of a spectral
action along the lines of Sect. 9.3 will be briefly described in the next Section.

9.5 The Fermionic Spectral Action

Consider a real spectral triple (A,H, D, J). Recall from Sect. 9.3 the interpre-
tation of gauge degrees of freedom as ‘inner fluctuations’ of a noncommutative
geometry, fluctuations which replace the operator D by D+A+JAJ∗, where
A is the gauge potential.

The fermionic spectral action is just given by

SF (ψ,A, J) =: 〈ψ,DAψ〉 = 〈ψ,D +A+ JAJ∗)ψ〉 , (9.89)

with ψ ∈ H. The previous action again depends only on the spectral proper-
ties of the triple.
By using the A-bimodule structure on H in (6.82), we get an ‘adjoint repre-
sentation’ of the unitary group U(A) by unitary operators on H,

H× U(A) � (ψ, u) → ψu =: u ξ u∗ = uJuJ∗ ψ ∈ H . (9.90)

That this action preserves the scalar product, namely 〈ψu, ψu〉 = 〈ψ,ψ〉,
follows from the fact that both u and J act as isometries.
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Proposition 50. The spectral action (9.89) is invariant under the gauge ac-
tion of the inner automorphisms given by (9.90) and (9.64),

SF (ψu, Au, J) = SF (ψ,A, J) , ∀ u ∈ U(A) . (9.91)

Proof. By using the result (9.65) DAu = UDAU
∗, with U = uJuJ∗, we find

SF (ψu, Au, J) = 〈ψu, DAuψu〉
= 〈ψJu∗J∗u, UDAU

∗)uJuJ∗ ψ〉
= 〈ψJu∗J∗u, uJuJ∗ DAJu

∗J∗uuJuJ∗ ψ〉
= 〈ψ,DAψ〉
= SF (ψ,A, J) . (9.92)

For the spectral triple of the standard model in (9.44), (9.45), (9.40),
(9.41), the action (9.89) gives the fermionic sector of the standard model
[35, 118]. It is worth stressing that although the noncommutative fermionic
multiplet ψ transforms in the adjoint representation (9.90) of the gauge group,
the physical fermion fields will transform in the fundamental representation
(N) while the antifermions will transform in the conjugate (N).



10 Gravity Models

We shall describe three possible approaches1 to the construction of gravity
models in noncommutative geometry which, while agreeing for the canonical
triple associated with an ordinary manifold (and reproducing the usual Ein-
stein theory), seem to give different answers for more general examples.
As a general remark, we should like to mention that a noncommutative recipe
to construct gravity theories (at least the usual Einstein one) has to include
the metric as a dynamical variable which is not a priori given. In particular,
one should not start with the Hilbert space H = L2(M,S) of spinor fields
whose scalar product uses a metric on M which, therefore, would play the
rôle of a background metric. The beautiful result by Connes [35] which we
recall in the following Section goes exactly in the direction of deriving all
geometry a posteriori.

10.1 Gravity à la Connes-Dixmier-Wodzicki

The first scheme which we use to construct gravity models in noncommutative
geometry, and in fact to reconstruct the full geometry out of the algebra
C∞(M), is based on the Dixmier trace and the Wodzicki residue [38, 37],
which we have studied at length in Sects. 6.2 and 6.3.

Proposition 51. Suppose we have a smooth compact manifold M without
boundary and of dimension n. Let A = C∞(M) and D is just a ‘symbol’ for
the time being. Let (Aπ, Dπ) be a unitary representation of the couple (A, D)
as operators on a Hilbert space Hπ endowed with an operator Jπ, such that
the ‘triple’ (Aπ, Dπ,Hπ, Jπ) satisfies all the axioms of a real spectral triple
given in Sect. 6.4.
Then,

a) There exists a unique Riemannian metric gπ on M such that the geodesic
distance between any two points on M is given by

d(p, q) = sup
a∈A

{|a(p)− a(q)| | ||[Dπ, π(a)]||B(Hπ) ≤ 1} , ∀ p, q ∈M .

(10.1)
1 Two approaches, in fact, since as we shall see the first two are really the same.

G. Landi: LNPm 51, pp. 151–163, 2002.
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b) The metric gπ depends only on the unitary equivalence class of the rep-
resentation π. The fibers of the map π �→ gπ from unitary equivalence
classes of representations to metrics form a finite collection of affine
spaces Aσ parameterized by the spin structures σ on M .

c) The action functional given by the Dixmier trace

G(D) = trω(D2−n) , (10.2)

is a positive quadratic form with a unique minimum πσ on each Aσ.
d) The minimum πσ is the representation of (A, D) on the Hilbert space of

square integrable spinors L2(M,Sσ); Aσ acts by multiplicative operators
and Dσ is the Dirac operator of the Levi-Civita connection.

e) At the minimum πσ, the value of G(D) coincides with the Wodzicki residue
of D2−n

σ and is proportional to the Einstein-Hilbert action of general rel-
ativity

G(Dσ) = ResW (D2−n
σ )

=:
1

n(2π)n

∫
S∗M

tr(σ−n(x, ξ))dxdξ

= cn

∫
M

Rdx ,

cn =
(2− n)

12
2[n/2]−n/2

(2π)n/2
Γ (
n

2
+ 1)−1 . (10.3)

Here,

σ−n(x, ξ) = part of order − n of the total symbol of D2−n
σ , (10.4)

R is the scalar curvature of the metric of M and tr is a normalized
Clifford trace.

f) If there is no real structure J , one has to replace spin above by spinc. The
uniqueness of point c) is lost and the minimum of the functional G(D)
is reached on a linear subspace of Aσ with σ a fixed spinc structure. This
subspace is parameterized by the U(1) gauge potentials entering in the
spinc Dirac operator. Point d) and c) still hold. In particular the extra
terms coming from the U(1) gauge potential drop out of the gravitational
action G(Dσ).

Proof. For a proof of this theorem we refer to [130, 85]. For n = 4 the equality
(10.3) was proven by ‘brute force’ in [100] by means of symbol calculus of
pseudodifferential operators. There it was also proven that the results do not
depend upon the extra contributions coming from the U(1) gauge potential.
In [93], the equality (10.3) was proven in any dimension by realizing that
ResW (D2−n

σ ) is (proportional) to the integral of the second coefficient of the
heat kernel expansion of D2

σ (see also [2]). It is this fact that relates the
previous theorem to the spectral action for gravity as we shall see in the next
section.
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Finally, the fact that A is the algebra of smooth functions on a manifold
can be recovered a posteriori as well. Connes’ axioms allow one to recover
the spectrum of A as a smooth manifold (a smooth submanifold of RN for a
suitable N) [35].

10.2 Spectral Gravity

In this section we shall compute the spectral action (9.63) described in
Sect. 9.3, for the purely gravitational sector. We shall get a sort of ‘induced
gravity without fermions’ together with the corrected sign for the gravita-
tional constant [137, 3].

Consider the canonical triple (A,H, D) on a closed n-dimensional Rie-
mannian spin manifold (M, g) which we have described in Sect. 6.5. We re-
call that A = C∞(M) is the algebra of complex valued smooth functions
on M ; H = L2(M,S) is the Hilbert space of square integrable sections of
the irreducible, rank 2[n/2] spinor bundle over M ; and finally, D is the Dirac
operator of the Levi-Civita spin connection.

The action we need to compute is

SG(D,Λ) = trH(χ(
D2

Λ2 )) . (10.5)

Here trH is the usual trace in the Hilbert space H = L2(M,S), Λ is a cutoff
parameter and χ is a suitable cutoff function which cuts off all the eigenvalues
of D2 which are larger than Λ2. The parameter Λ has dimension of an inverse
length and, as we shall see, determines the scale at which the gravitational
action (10.5) departs from the action of general relativity.

As already mentioned, the action (10.5) depends only on the spectrum
of D. Before we proceed let us spend some words on the problem of spec-
tral invariance versus diffeomorphism invariance. We denote by spec(M,D)
the spectrum of the Dirac operator with each eigenvalue repeated accord-
ing to its multiplicity. Two manifolds M and M ′ are called isospectral if
spec(M,D) = spec(M ′, D).2 From what has been said, the action (10.5) is
a spectral invariant. Now, it is well known that one cannot hear the shape
of a drum [92, 121] (see also [83, 81] and references therein), namely there
are manifolds which are isospectral without being isometric (the converse is
obviously true). Thus, spectral invariance is stronger than diffeomorphism
invariance.

The Lichnérowicz formula (6.53) gives the square of the Dirac operator
as

D2 = ∇S +
1
4
R . (10.6)

2 In fact, one usually takes the Laplacian instead of the Dirac operator.
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with R the scalar curvature of the metric, and ∇S the Laplacian operator
lifted to the bundle of spinors,

∇S = −gµν(∇S
µ∇S

ν − Γ ρ
µν∇S

ρ ) , (10.7)

and Γ ρ
µν are the Christoffel symbols of the connection.

In the rest of this section we shall limit ourself to the case in which the
manifold M is four-dimensional, while for the general situation we refer to
[104]. Then, the heat kernel expansion [83, 26], allows one to express the
action (10.5) as an expansion

SG(D,Λ) =
∑
k≥0

fkak(D2/Λ2) , (10.8)

where the coefficients fk are given by

f0 =
∫ ∞

0

χ(u)udu ,

f2 =
∫ ∞

0

χ(u)du ,

f2(n+2) = (−1)nχ(n)(0) , n ≥ 0 , (10.9)

and χ(n) denotes the n-th derivative of the function χ with respect to its
argument.
The Seeley-de Witt coefficients ak(D2/Λ2) vanish for odd values of k. The
even ones are given as integrals

ak(D2/Λ2) =
∫
M

ak(x;D2/Λ2)
√
gdx . (10.10)

The first three coefficients, for even k, are,

a0(x;D2/Λ2) = (Λ2)2
1

4π2 ,

a2(x;D2/Λ2) = (Λ2)1
1

4π2 (−R
6

+ E) ,

a4(x;D2/Λ2) = (Λ2)0
1

4π2

1
360

[− 12R µ
;µ + 5R2 − 2RµνR

µν

− 7
4
RµνρσR

µνρσ − 60RE + 180E2 + 60E µ
;µ
]
.

(10.11)

Here Rµνρσ are the components of the Riemann tensor, Rµν the components
of the Ricci tensor and R is the scalar curvature. As for E, it is given by
E =: D2 − ∇S = 1

4R. By substituting back into (10.10) and on integrating
we obtain
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a0(D2/Λ2) = (Λ2)2
1

4π2

∫
M

√
gdx ,

a2(D2/Λ2) = (Λ2)1
1

4π2

1
12

∫
M

√
gdx R ,

a4(D2/Λ2) = (Λ2)0
1

4π2

1
360

∫
M

√
gdx

[
3R µ

;µ +
5
4
R2

− 2RµνR
µν − 7

4
RµνρσR

µνρσ
]
.

(10.12)

Then, the action (10.5) turns out to be

SG(D,Λ) = trH(χ(
D2

Λ2 ))

= (Λ2)2f0
1

4π2

∫
M

√
gdx

+ (Λ2)1f2
1

4π2

1
12

∫
M

√
gdx R

+ (Λ2)0f4
1

4π2

1
360

∫
M

√
gdx

[
3R µ

;µ +
5
4
R2

− 2RµνR
µν − 7

4
RµνρσR

µνρσ
]

+ O((Λ2)−1) . (10.13)

Thus we get an action consisting of the Einstein-Hilbert action with a cos-
mological constant, plus lower order terms in Λ. To get the correct Newton
constant in front of the Einstein-Hilbert term, one has to fix the parameter
Λ in such a way that 1/Λ is of the order of the Planck length L0 ∼ 10−33cm.
In turn, this value of Λ produces a huge cosmological constant which is a
problem for the physical interpretation of the theory if one interprets (10.5)
as an approximated gravitational action for slowly varying metrics with small
curvature (with respect to the scale Λ). Indeed, the solutions of the equations
of motion would have Plank-scale Ricci scalar and, therefore, they would be
out of the regime for which the approximation is valid. As we shall see, the
cosmological term can be cancelled out.

First of all, we take the function χ to be the characteristic value of the
interval [0, 1],

χ(u) =
{

1 for u ≤ 1 ,
0 for u ≥ 1 , (10.14)

possibly ‘smoothed out’ at u = 1. For this choice we get,

f0 = 1/2 , f2 = 1 ,
f4 = 1 , f2(n+2) = 0 , n ≥ 1 , (10.15)
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and the action (10.13) becomes

SG(D,Λ) = (Λ2)2
1

8π2

∫
M

√
gdx

+ (Λ2)1
1

48π2

∫
M

√
gdx R

+ (Λ2)0
1

4π2

1
360

∫
M

√
gdx

[
3R µ

;µ +
5
4
R2

− 2RµνR
µν − 7

4
RµνρσR

µνρσ
]
.

(10.16)

In [108, 109] the following trick was suggested in order to eliminate the cos-
mological term: replace the function χ by χ̃ defined as

χ̃(u) = χ(u)− aχ(bu) , (10.17)

with a, b any two numbers such that a = b2 and b ≥ 0, b 
= 1. Indeed, one
easily finds that,

f̃0 =:
∫ ∞

0

χ̃(u)udu = (1− a

b2
)f0 = 0 ,

f̃2 =:
∫ ∞

0

χ̃(u)du = (1− a
b

)f2 ,

f̃2(n+2) =: (−1)nχ̃
(n)

(0) = (−1)n(1− abn)χ(n)(0) , n ≥ 0 .
(10.18)

The action (10.5) becomes

S̃G(D,Λ) = (Λ2)1 (1− a
b

)f2
1

48π2

∫
M

√
gdx R +O((Λ2)0). (10.19)

Low curvature geometries, for which the heat-kernel expansion is valid, are
now solutions of the theory.

Summing up, we obtain a theory that approximates pure general relativity
at scales which are large when compared with 1/Λ.

We end by mentioning that in [108, 109], in the spirit of spectral grav-
ity, the eigenvalues of the Dirac operator, which are diffeomorphic invariant
functions of the geometry3 and therefore true observables in general relativ-
ity, have been taken as a set of variables for an invariant description of the
dynamics of the gravitational field. The Poisson brackets of the eigenvalues
3 In fact, the eigenvalues of the Dirac operator are only invariant under the action
of diffeomorphisms which preserve the spin structure [16].
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were computed and determined in terms of the energy-momentum of the
eigenspinors and of the propagator of the linearized Einstein equations. The
eigenspinors energy-momenta form the Jacobian of the transformation of co-
ordinates from the metric to the eigenvalues, while the propagator appears
as the integral kernel giving the Poisson structure. The equations of motion
of the modified action (10.19) are satisfied if the trans Planckian eigenspinors
scale linearly with the eigenvalues: this requirement give approximate Ein-
stein equations.

As already mentioned, there exist isospectral manifolds which fail to be
isometric. Thus, the eigenvalues of the Dirac operator cannot be used to
distinguish among such manifolds (should one really do that from a physical
point of view?). A complete analysis of this problem and of its consequences
must await another occasion.

10.3 Linear Connections

A different approach to gravity theory, developed in [27, 28], is based on
a theory of linear connections on an analogue of the cotangent bundle in
the noncommutative setting. It turns out that the analogue of the cotangent
bundle is more appropriate than the analogue of the tangent bundle. One
could define the (analogue) of ‘the space of sections of the tangent bundle’
as the space of derivations Der(A) of the algebra A. However, in many cases
this is not a very useful notion since there are algebras with far too few
derivations. Moreover, Der(A) is not an A-module but a module only over
the center of A. For models constructed along these lines we refer to [116].

We shall now briefly describe the notion of a linear connection. There are
several tricky technical points, mainly related to the Hilbert space closure of
space of forms. We ignore them here while referring to [27, 28] for further
details.

Suppose then, we have a spectral triple (A,H, D) with associated differ-
ential calculus (ΩDA, d). The space Ω1

DA is the analogue of the ‘space of
sections of the cotangent bundle’. It is naturally a right A-module and we
furthermore assume that it is also projective of finite type.

In order to develop ‘Riemannian geometry’, one needs the ‘analogue’ of
a metric on Ω1

DA. Now, there is a canonical Hermitian structure 〈·, ·〉D :
Ω1
DA × Ω1

DA → A which is uniquely determined by the triple (A,H, D). It
is given by,

〈α, β〉D =: P0(α∗β) ∈ A , α, β ∈ Ω1
DA , (10.20)

where P0 is the orthogonal projector onto A determined by the scalar product
(7.92) as in Sect. 7.3.4 The map (10.20) satisfies properties (4.19-4.20) which
characterize a Hermitian structure. It is also weakly nondegenerate, namely
〈α, β〉D = 0 for all α ∈ Ω1

DA implies that β = 0. It does not, in general,
4 In fact the left hand side of (10.20) is in the completion of A.
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satisfy the strong nondegeneracy condition expressed in terms of the dual
module (Ω1

DA)′ as in Sect. 4.3. Such a property is assumed to hold. Therefore,
if (Ω1

DA)′ is the dual module, we assume that the Riemannian structure in
(10.20) determines an isomorphism of right A-modules,

Ω1
DA −→ (Ω1

DA)′ , α �→ 〈α, ·〉D . (10.21)

We are now ready to define a linear connection. It is formally the same
as in the definition 23 by taking E = Ω1

DA.

Definition 25. A linear connection on Ω1
DA is a C-linear map

∇ : Ω1
DA −→ Ω1

DA⊗A Ω1
DA , (10.22)

satisfying the Leibniz rule

∇(αa) = (∇α)a+ αda , ∀ α ∈ Ω1
DA , a ∈ A . (10.23)

Again, one can extend it to a map ∇ : Ω1
DA ⊗A Ω

p
DA → Ω1

DA ⊗A Ω
p+1
D A

and the Riemannian curvature of ∇ is then the A-linear map given by

R∇ =: ∇2 : Ω1
DA → Ω1

DA ⊗A Ω1
DA . (10.24)

The connection ∇ is said to be metric if it is compatible with the Riemannian
structure 〈·, ·〉D on Ω1

DA, namely if it satisfies the relation,

−〈∇α, β〉D + 〈α,∇β〉D = d 〈α, β〉D , ∀ α, β ∈ Ω1
DA . (10.25)

Next, one defines the torsion of the connection ∇ as the map

T∇ : Ω1
DA → Ω2

DA ,
T∇ =: d−m ◦ ∇ , (10.26)

where m : Ω1
DA ⊗A Ω1

DA → Ω2
DA is just multiplication, m(α ⊗A β) = αβ.

One easily checks (right) A-linearity so that T∇ is a ‘tensor’. For an ordinary
manifold with linear connection, the definition(10.26) yields the dual (i.e. the
cotangent space version) of the usual definition of torsion.

A connection∇ onΩ1
DA is a Levi-Civita connection if it is compatible with

the Riemannian structure 〈·, ·〉D onΩ1
DA and its torsion vanishes. Contrary to

what happens in the ordinary differential geometry, a Levi-Civita connection
need not exist for a generic spectral triple or there may exist more than one
such connections.

Next, we derive the Cartan structure equations. For simplicity, we shall
suppose that Ω1

DA is a free module with a basis {EA, A = 1, · · ·N} so that
any element α ∈ Ω1

DA can be written as α = EAαA with αA ∈ A. The basis
is taken to be orthonormal with respect to the Riemannian structure 〈·, ·〉D,〈
EA, EB

〉
D

= ηAB , ηAB = diag(1, · · · , 1) , A,B = 1, · · · , N . (10.27)
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A connection ∇ on Ω1
DA is completely determined by the connection

1-forms Ω B
A ∈ Ω1

DA which are defined by,

∇EA = EB ⊗Ω A
B , A = 1, . . . , N. (10.28)

The components of the torsion TA ∈ Ω2
DA and the curvature R B

A ∈ Ω2
DA

are defined by

T∇(EA) = TA ,

R∇(EA) = EB ⊗R A
B , A = 1, . . . , N. (10.29)

By making use of the definitions (10.26) and (10.24) one gets the structure
equations,

TA = dEA − EBΩ A
B , A = 1, . . . , N , (10.30)

R B
A = dΩ B

A +Ω C
A Ω B

C , A,B = 1, . . . , N. (10.31)

The metricity condition (10.25), for the connection 1-forms now reads,

−Ω A
C

∗ηCB + ηACΩ B
C = 0 . (10.32)

As mentioned before, metricity and the vanishing of the torsion do not
uniquely fix the connection. Sometimes, one imposes additional constraints
by requiring that the connection 1-forms are Hermitian,

Ω B
A

∗ = Ω B
A . (10.33)

The components of a connection, its torsion and its Riemannian curvature
transform in the ‘usual’ way under a change of orthonormal basis for Ω1

DA.
Consider then a new basis {ẼA, A = 1, · · ·N} of Ω1

DA. The relationship
between the two bases is given by

ẼA = EB(M−1) A
B , EA = ẼBM A

B , (10.34)

with the obvious identities,

M C
A (M−1) B

C = (M−1) C
A M B

C = δBA , (10.35)

which just say that the matrix M = (M A
B ) ∈ MN (A) is invertible with

inverse given by M−1 = ((M−1) A
B ) . By requiring that the new basis be

orthonormal with respect to 〈·, ·〉D we get,

ηAB =
〈
EA, EB

〉
D

=
〈
ẼPM A

P , ẼQM B
Q

〉
D

= (M A
P )∗

〈
ẼP , ẼQ

〉
D
M B

Q

= (M A
P )∗ηPQM B

Q . (10.36)
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From this and (10.35) we obtain the identity

(M−1) B
A = ηAQ(M Q

P )∗ηPB , (10.37)

or M∗ = M−1. From (10.35), we infer that M is a unitary matrix, MM∗ =
M∗M = I, i.e. it is an element in UN (A).
It is now straightforward to find the transformed components of the connec-
tion, of its curvature and of its torsion

Ω̃ B
A = M P

A Ω Q
P (M−1) B

Q +M P
A d(M−1) B

P , (10.38)

R̃ B
A = M P

A R Q
P (M−1) B

Q , (10.39)

T̃A = TB(M−1) A
B . (10.40)

Consider the basis {εA, A = 1, · · · , N} of (Ω1
DA)′, dual to the basis {EA},

εA(EB) = δBA . (10.41)

By using the isomorphism (10.21) for the element εA, there is an ε̂A ∈ Ω1
DA

determined by

εA(α) = 〈ε̂A, α〉D , ∀ α ∈ Ω1
DA , A = 1, . . . , N. (10.42)

One finds that
ε̂A = EBηBA , A = 1, . . . , N, (10.43)

and, under a change of basis as in (10.34), they transform as

˜̂εA = ε̂B(M B
A )∗ , A = 1, . . . , N. (10.44)

The Ricci 1-forms of the connection ∇ are defined by

R∇
A = P1(R B

A (ε̂B)∗) ∈ Ω1
DA , A = 1, · · · , N . (10.45)

As for the scalar curvature, it is defined by

r∇ = P0(EAR∇
A ) = P0(EAP1(R B

A ε̂B)∗) ∈ A . (10.46)

The projectors P0 and P1 are again the orthogonal projectors on the space
of zero and 1-forms determined by the scalar product (7.92). It is straight-
forward to check that the scalar curvature does not depend on the particular
orthonormal basis of Ω1

DA. Finally, the Einstein-Hilbert action is given by

IHE(∇) = trωr|D|−n = trωE
AR B

A ε̂∗B |D|−n . (10.47)
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10.3.1 Usual Einstein Gravity

Let us consider the canonical triple (A,H, D) on a closed n-dimensional Rie-
mannian spin manifold (M, g) which we have described in Sect. 6.5. We recall
that A = C∞(M) is the algebra of complex valued smooth functions on M ;
H = L2(M,S) is the Hilbert space of square integrable sections of the irre-
ducible spinor bundle over M ; and D is the Dirac operator of the Levi-Civita
spin connection, which can be written locally as

D = γµ(x)∂µ + lower order terms
= γaeµa∂µ + lower order terms . (10.48)

The ‘curved’ and ‘flat’ Dirac matrices are related by

γµ(x) = γaeµa , µ = 1, . . . , n, (10.49)

and obey the relations

γµ(x)γν(x) + γν(x)γµ(x) = −2gµν , µ, ν = 1, . . . , n,
γaγb + γbγa = −2ηab , a, b = 1, . . . , n. (10.50)

We shall take the matrices γa to be hermitian.
The n-beins eµa relate the components of the curved and flat metric, as usual,
by

eµagµνe
ν
b = ηab , eµaη

abeνb = gµν . (10.51)

Finally, we recall that, from the analysis of Sect. 7.2.1, generic elements α ∈
Ω1
DA and β ∈ Ω2

DA can be written as

α = γaαa = γµαµ , αa = eµaαµ ,

β =
1
2
γabβab =

1
2
γµνβµν , βab = eµae

ν
aβµν , (10.52)

with γab = 1
2 (γaγb − γbγa) and γµν = 1

2 (γµγν − γνγµ). The module Ω1
DA is

projective of finite type and we can take as an orthonormal basis

Ea = γa ,
〈
Ea, Eb

〉
= trγaγb = ηab , a, b = 1, . . . , n, (10.53)

with tr a normalized Clifford trace. Then, the dual basis {εa} of (Ω1
DA)′ is

given by,
εa(α) = αa = eµaαµ , (10.54)

and the associated 1-forms ε̂a are found to be

ε̂a = γaηab . (10.55)

Hermitian connection 1-forms are of the form

Ω b
a = γcω b

ca = γµω b
µa . (10.56)
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Metricity and the vanishing of torsion read, respectively,

γµ(ω a
µc η

cb + ηacω b
µc ) = 0 , (10.57)

γµν(∂µeaν − ebµω a
νb ) = 0 . (10.58)

As the sets of matrices {γµ} and {γµν} are independent, the conditions
(10.57) and (10.58) require the vanishing of the terms in parenthesis and,
in turn, these just say that the coefficients ω b

µa (or equivalently ω b
ca ) deter-

mine the Levi-Civita connection of the metric gµν [147].
The curvature 2-forms can then be written as

R b
a =

1
2
γcdR b

cda , (10.59)

with R b
cda the components of the Riemannian tensor of the connection ω b

ca .
As for the Ricci 1-forms, they are given by

Ra = P1(R b
a ε̂∗a) =

1
2
γcdγfR b

cda ηfb . (10.60)

It takes a little algebra to find

Ra = −1
2
γcR b

cba . (10.61)

The scalar curvature is found to be

r =: P0(γaRa) = −1
2
P0(γaγc)R b

cba = ηacR b
cba , (10.62)

which is just the usual scalar curvature [147].

10.4 Other Gravity Models

In [27, 28], the action (10.47) was computed for a Connes-Lott space M ×Y ,
i.e. a product of a Riemannian, four-dimensional, spin manifold M with a
discrete internal space Y consisting of two points. The Levi-Civita connec-
tion on the module of 1-forms depends on a Riemannian metric on M and a
real scalar field which determines the distance between the two-sheets. The
action (10.47) contains the usual integral of the scalar curvature of the metric
on M , a minimal coupling for the scalar field to such a metric, and a kinetic
term for the scalar field.
The Wodzicki residue method applied to the same space yields an Einstein-
Hilbert action which is the sum of the usual term for the metric ofM together
with a term proportional to the square of the scalar field. There is no kinetic
term for the latter [93].
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A somewhat different model of geometry on the Connes-Lott spaceM×Y was
presented in [110]. The final action is just the Kaluza-Klein action of unified
gravity-electromagnetism and consists of the usual gravity term, a kinetic
term for a minimally coupled scalar field and an electromagnetic term.

Several examples of gravity and Kaluza-Klein theories have been con-
structed by using the bimodule structure of E = Ω1A (see [116, 119] and
references therein).



11 Quantum Mechanical Models
on Noncommutative Lattices

As a very simple example of a quantum mechanical system which can be
studied with the techniques of noncommutative geometry on noncommutative
lattices, we shall construct the θ-quantization of a particle on a lattice for
the circle. We shall do so by constructing an appropriate ‘line bundle’ with
a connection. We refer to [7] and [8] for more details and additional field
theoretical examples. In particular, in [8] we derived Wilson’s actions for
gauge and fermionic fields and analogues of topological and Chern-Simons
actions.

The real line R1 is the universal covering space of the circle S1, and the
fundamental group π1(S1) = Z acts on R1 by translation

R1 � x→ x+N , N ∈ Z . (11.1)

The quotient space of this action is S1 and the projection : R1 → S1 is given
by R1 � x→ ei2πx ∈ S1.

Now, the domain of a typical Hamiltonian for a particle on S1 need not
consist of functions on S1. Rather it can be obtained from functions ψθ on
R1 transforming under an irreducible representation of π(S1) = Z,

ρθ : N → eiNθ (11.2)

according to
ψθ(x+N) = eiNθψθ(x) . (11.3)

The domain Dθ(H) for a typical Hamiltonian H then consists of these ψθ
restricted to a fundamental domain 0 ≤ x ≤ 1 for the action of Z, and subject
to a differentiability requirement:

Dθ(H) = {ψθ : ψθ(1) = eiθψθ(0) ;
dψθ(1)
dx

= eiθ
dψθ(0)
dx

} . (11.4)

In addition, Hψθ must be square integrable for the measure on S1 used to
define the scalar product of wave functions.
One obtains a distinct quantization, called θ-quantization, for each choice of
eiθ.

Equivalently, wave functions can be taken to be single-valued functions
on S1 while adding a ‘gauge potential’ term to the Hamiltonian. To be more
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precise, one constructs a line bundle over S1 with a connection one-form
given by iθdx. If the Hamiltonian with the domain (11.4) is −d2/dx2, then
the Hamiltonian with the domain D0(h) consisting of single valued wave
functions is −(d/dx+ iθ)2.

There are similar quantization possibilities for a noncommutative lattice
for the circle as well [7]. One constructs the algebraic analogue of the trivial
bundle on the lattice endowed with a gauge connection which is such that
the corresponding Laplacian has an approximate spectrum reproducing the
‘continuum’ one in the limit.

As we have seen in Chap. 3, the algebra A associated with any non-
commutative lattice of the circle is rather complicated and involves infinite
dimensional operators on direct sums of infinite dimensional Hilbert spaces.
In turn, this algebra A, as it is AF (approximately finite dimensional), can
indeed be approximated by algebras of matrices. The simplest approximation
is just a commutative algebra C(A) of the form

C(A) ' CN = {c = (λ1, λ2, · · · , λN ) , λi ∈ C} . (11.5)

The algebra (11.5) can produce a noncommutative lattice with 2N points by
considering a particular class of not necessarily irreducible representations as
in Fig. 11.1. In that Figure, the top points correspond to the irreducible one
dimensional representations

πi : C(A) → C , c �→ πi(c) = λi , i = 1, · · · , N . (11.6)

As for the bottom points, they correspond to the reducible two dimensional
representations

πi+N : C(A) → M2(C) , c �→ πi+N (c) =
(
λi 0
0 λi+1

)
, i = 1, · · · , N ,

(11.7)
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Fig. 11.1. P2N (S1) for the approximate algebra C(A)
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with the additional condition that N + 1 = 1. The partial order, or equiv-
alently the topology, is determined by the inclusion of the corresponding
kernels as in Chap. 3.

By comparing Fig. 11.1 with the corresponding Fig. 3.18, we see that by
trading A with C(A), all compact operators have been put to zero. A better
approximation is obtained by approximating compact operators with finite
dimensional matrices of increasing rank.

The finite projective module of sections E associated with the ‘trivial line
bundle’ is just C(A) itself:

E = CN = {η = (µ1, µ2, · · · , µN ) , µi ∈ C} . (11.8)

The action of C(A) on E is simply given by

E × C(A) → E , (η, c) �→ ηc = (η1λ1, η2λ2 · · · ηNλN ) . (11.9)

On E there is a C(A)-valued Hermitian structure 〈·, ·〉,
〈η′, η〉 := (η′∗1 η1, η

′∗
2 η2, · · · , η′∗NηN ) ∈ C(A) . (11.10)

Next, we need a K-cycle (H, D) over C(A). We take CN for H on which
we represent elements of C(A) as diagonal matrices

C(A) � c �→ diag(λ1, λ2, . . . λN ) ∈ B(CN ) ' MN (C) . (11.11)

Elements of E will be realized in the same manner,

E � η �→ diag(η1, η2, . . . ηN ) ∈ B(CN ) ' MN (C) . (11.12)

Since our triple (C(A),H, D) will be zero dimensional, the (C-valued) scalar
product associated with the Hermitian structure (11.10) will be taken to be

(η′, η) =
N∑
j=1

η′∗j ηj = tr〈η′, η〉 , ∀ η′, η ∈ E . (11.13)

By identifying N + j with j, we take for the operator D, the N × N
self-adjoint matrix with elements

Dij =
1√
2ε

(m∗δi+1,j +mδi,j+1) , i, j = 1, · · · , N , (11.14)

where m is any complex number of modulus one: mm∗ = 1.
As for the connection 1-form ρ on the bundle E , we take it to be the

hermitian matrix with elements

ρij =
1√
2ε

(σ∗m∗δi+1,j + σmδi,j+1) ,

σ = e−iθ/N − 1 , i, j = 1, · · · , N . (11.15)
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One checks that, modulo junk forms, the curvature of ρ vanishes,

dρ+ ρ2 = 0 . (11.16)

It is also possible to prove that ρ is a ‘pure gauge’ for θ = 2πk, with
k any integer, that is that there exists a c ∈ C(A) such that ρ = c−1dc.
If c = diag(λ1, λ2, . . . , λN ), then any such c will be given by λ1 = λ , λ2 =
ei2πk/Nλ , ..., λj = ei2πk(j−1)/Nλ , ..., λN = ei2πk(N−1)/Nλ, with λ not equal
to 0 (these properties are the analogues of the properties of the connection
iθdx in the ‘continuum’ limit).

The covariant derivative ∇θ on E , ∇θ : E → E ⊗C(A) Ω
1(C(A)) is then

given by
∇θη = [D, η] + ρη , ∀ η ∈ E . (11.17)

In order to define the Laplacian ∆θ one first introduces a ‘dual’ operator ∇∗
θ

via
(∇θη

′,∇θη) = (η′,∇∗
θ∇θη) , ∀ η′, η ∈ E . (11.18)

The Laplacian ∆θ on E , ∆θ : E → E , can then be defined by

∆θη = −q(∇θ)∗∇θη , ∀ η ∈ E , (11.19)

where q is the orthogonal projector on E for the scalar product (·, ·) in (11.13).
This projection operator is readily seen to be given by

(qM)ij = Miiδij , no summation on i , (11.20)

with M any element in MN (C). Hence, the action of ∆θ on the element
η = (η1, · · · , ηN ) , ηN+1 = η1, is explicitly given by

(∆θη)ij = −(∇∗
θ∇θη)iiδij ,

−(∇∗
θ∇θη)ii =

{− [D, [D, η]]− 2ρ[D, η]− ρ2η}
ii

=
1
ε2

[
e−iθ/Nηi−1 − 2ηi + eiθ/Nηi+1

]
; i = 1, 2, · · · , N .

(11.21)

The associated eigenvalue problem

∆θη = λη , (11.22)

has solutions

λ = λk =
2
ε2

[
cos(k +

θ

N
)− 1

]
, (11.23)

η = η(k) = diag(η(k)
1 , η

(k)
2 , · · · , η(k)

N ) , k = m
2π
N
, m = 1, 2, · · · , N ,

(11.24)
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with each component η(k)
j having an expression of the form

η
(k)
j = A(k)eikj +B(k)e−ikj , A(k), B(k) ∈ C . (11.25)

We see that the eigenvalues (11.23) are an approximation to the continuum
answers −4k2 , k ∈ R.



A Appendices

A.1 Basic Notions of Topology

In this appendix we gather together a few fundamental notions of topology
and topological spaces while referring to [87, 71] for a more detailed account.

A topological space is a set S together with a collection τ = {Oα} of
subsets of S, called open sets, which satisfy the following axioms

O1 The union of any number of open sets is an open set.
O2 The intersection of a finite number of open sets is an open set.
O3 Both S and the empty set ∅ are open.

Having a topology it is possible to define the notion of a continuous map. A
map f : (S1, τ1) → (S2, τ2) between two topological spaces is defined to be
continuous if the inverse image f−1(O) is open in S1 for any open O in S2.
A continuous map f which is a bijection and such that f−1 is continuous as
well is called a homeomorphism.

Given a topology on a space, one can define the notion of limit point
of a subset. A point p is a limit point of a subset X of S if every open set
containing p contains at least another point of X distinct from p.
A subset X of a topological space S is called closed if the complement S \X
is open. It turns out that the subset X is closed if and only if it contains all
its limit points.

The collection {Cα} of all closed subsets of a topological space S, satisfy
properties which are dual to the corresponding ones for the open sets.

C1 The intersection of any number of closed sets is a closed set.
C2 The union of a finite number of closed sets is a closed set.
C3 Both S and the empty set ∅ are closed.

One can, then, put a topology on a space by giving a collection of closed sets.
The closureX of a subsetX of a topological space (S, τ) is the intersection

of all closed sets containing X. It is evident that X is the smallest closed set
containing X and that X is closed if and only if X = X. It turns out that a
topology on a set S can be given by means of a closure operation. Such an
operation is an assignment of a subset X of S to any subset X of S, in such
a manner that the following Kuratowski closure axioms are true,
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K1 ∅ = ∅ .
K2 X ⊆ X .
K3 X = X .
K4 X

⋃
Y = X

⋃
Y .

If σ is the family of all subsets X of S for which X = X and τ is the family
of all complements of members of σ, then τ is a topology for S, and X is the
τ -closure of X for any subset of S. Clearly, σ is the family of closed sets.

A topological space S is said to be a T0-space if: given any two points of
S, at least one of them is contained in an open set not containing the other.
This can also be stated by saying that for any pair of points, at least one of
the points is not a limit point of the other. In such a space, there may be sets
consisting of a single point which are not closed.

A topological space S is said to be a T1-space if: given any two points of
S, each of them lies in an open set not containing the other. This requirement
implies that each point (and then, by C2 above, every finite set) is closed.
This is often taken as a definition of a T1-space.

A topological space S is said to be a T2-space or a Hausdorff space if:
given any two points of S, there are disjoint open sets each containing one of
the two points but not both.
It is clear that the previous conditions are in an increasing order of strength
in the sense that being T2 implies being T1 and being T1 implies being T0 (a
space which is T2 is T1 and a space which is T1 is T0.).

A family U of sets is a cover of a (topological) space if S =
⋃{X,X ∈ U}.

The family is an open cover of S if every member of U is an open set. The
family is a finite cover if the number of members of U is finite. It is a locally
finite cover if and only if every x ∈ S has a neighborhood that intersects only
a finite number of members of the family.
A topological space S is called compact if every open cover of S has a finite
subcover of S. A topological space S is called locally compact if any point of
S has at least one compact neighborhood. A compact space is automatically
locally compact. If S is a locally compact space which is also Hausdorff, then
the family of closed compact neighborhoods of any point is a basis for its
neighborhood system.

The support of a real or complex valued function f on a topological space
S is the closure of the set Kf = {x ∈ S | f(x) 
= 0}. The function f is said
to have compact support if Kf is compact. The collection of all continuous
functions on S whose support is compact is denoted by Cc(S).
A real or complex valued function f on a locally compact Hausdorff space S
is said to vanish at infinity if for every ε > 0 there exists a compact set K ⊂ S
such that |f(x)| < ε for all x /∈ K. The collection of all continuous functions
on S which vanish at infinity is denoted by C0(S). Clearly Cc(S) ⊂ C0(S),
and the two classes coincide if S is compact. Furthermore, one can prove
that C0(S) is the completion of Cc(S) relative to the supremum norm (2.9)
described in Example 1 [136].
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A continuous map between two locally compact Hausdorff spaces f : S1 →
S2 is called proper if and only if for any compact subset K of S2, the inverse
image f−1(K) is a compact subset of S1.

A space which contains a dense subset is called separable. A topological
space which has a countable basis of open sets is called second-countable (or
completely separable).

A topological space S is called connected if it is not the union of two
disjoint, nonempty open sets. Equivalently, if the only sets in S that are
both open and closed are S and the empty set then S is connected. A subset
C of the topological space S is called a component of S, provided that C is
connected and maximal, namely it is not a proper subset of another connected
set in S. One can prove that any point of S lies in a component. A topological
space is called totally disconnected if the (connected) component of each point
consists only of the point itself. The Cantor set is a totally disconnected space.
In fact, any totally disconnected, second countable, compact Hausdorff space
is homeomorphic to a subset of the Cantor set.

If τ1 and τ2 are two topologies on the space S, one says that τ1 is coarser
than τ2 (or that τ2 is finer than τ1) if and only if τ1 ⊂ τ2, namely if and
only if every subset of S which is open in τ1 is also open in τ2. Given two
topologies on the space S it may happen that neither of them is coarser (or
finer) than the other. The set of all possible topologies on the same space is a
partially ordered set whose coarsest element is the topology in which only ∅
and S are open, while the finest element is the topology in which all subsets
of S are open (this topology is called the discrete topology).
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A.2 The Gel’fand-Naimark-Segal Construction

A state on the C∗-algebra A is a linear functional

φ : A −→ C , (A.1)

which is positive and of norm one, i.e.

φ(a∗a) ≥ 0 , ∀ a ∈ A ,
||φ|| = 1 . (A.2)

Here the norm of φ is defined as usual by ||φ|| = sup{|φ(a)| | ||a|| ≤ 1}. If A
has a unit (we always assume this is the case), positivity implies that

||φ|| = φ(I) = 1 . (A.3)

The set S(A) of all states of A is clearly a convex space, since the convex
combination λφ1 + (1− λ)φ2 ∈ S(A), for any φ1, φ2 ∈ S(A) and 0 ≤ λ ≤ 1.
Elements at the boundary of S(A) are called pure states, namely, a state
φ is called pure if it cannot be written as the convex combination of (two)
other states. The space of pure states is denoted by PS(A). If the algebra A
is abelian, a pure state is the same as a character and the space PS(A) is
just the space Â of characters of A which, when endowed with the Gel’fand
topology, is a Hausdorff (locally compact) topological space.

With each state φ ∈ S(A) there is associated a representation (Hφ, πφ) of
A, called the Gel’fand-Naimark-Segal (GNS) representation. The procedure
to construct such a representation is also called the GNS construction which
we shall now briefly describe [55, 124].

Suppose then that we are given a state φ ∈ S(A) and consider the space

Nφ = {a ∈ A | φ(a∗a) = 0} . (A.4)

By using the fact that φ(a∗b∗ba) ≤ ||b||2φ(a∗a), one infers that Nφ is a closed
(left) ideal of A. The space A/Nφ of equivalence classes is made into a pre-
Hilbert space by defining a scalar product by

A/Nφ ×A/Nφ −→ C , (a+Nφ, b+Nφ) �→ φ(a∗b) . (A.5)

This scalar product is clearly independent of the representatives in the equiv-
alence classes.
The Hilbert space Hφ completion of A/Nφ is the space of the representation.
Then, to any a ∈ A one associates an operator π(a) ∈ B(A/Nφ) by

π(a)(b+Nφ) =: ab+Nφ . (A.6)

Again, this action does not depend on the representative. By using the fact
that ||π(a)(b+Nφ)||2 = φ(b∗a∗ab) ≤ ||a||2φ(b∗b) = ||b+Nφ||2, one gets
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||π(a)|| ≤ ||a|| and in turn, that π(a) ∈ B(A/Nφ). There is a unique extension
of π(a) to an operator πφ(a) ∈ B(Hφ). Finally, one easily checks the algebraic
properties πφ(a1a2) = πφ(a1)πφ(a2) and πφ(a∗) = (πφ(a))∗ and one obtains
a ∗-morphism (a representation)

πφ : A −→ B(Hφ) , a �→ πφ(a) . (A.7)

It turns out that any state φ is a vector state. This means that there exists
a vector ξφ ∈ Hφ with the property,

(ξφ, πφ(a)ξφ) = φ(a) ,∀ a ∈ A . (A.8)

Such a vector is defined by

ξφ =: [I] = I +Nφ , (A.9)

and is readily seen to verify (A.8). Furthermore, the set {πφ(a)ξφ | a ∈ A}
is just the dense set A/Nφ of equivalence classes. This fact is stated by
saying that the vector ξφ is a cyclic vector for the representation (Hφ, πφ). By
construction, and by (A.3), a cyclic vector is of norm one, ||ξφ||2 = ||φ|| = 1.

The cyclic representation (Hφ, πφ, ξφ) is unique up to unitary equivalence.
If (H′

φ, π
′
φ, ξ

′
φ) is another cyclic representation such that (ξ′φ, π

′
φ(a)ξ′φ) = φ(a),

for all a ∈ A, then there exists a unitary operator U : Hφ → H′
φ such that

U−1π′
φ(a)U = πφ(a) , ∀ a ∈ A ,

Uξφ = ξ′φ . (A.10)

The operator U is defined by Uπφ(a)ξφ = π′
φ(a)ξ′φ for any a ∈ A. Then, the

properties of the state φ ensure that U is well defined and preserves the scalar
product.

It is easy to see that the representation (Hφ, ξφ) is irreducible if and only if
every non zero vector ξ ∈ Hφ is cyclic so that there are no nontrivial invariant
subspaces. It is somewhat surprising that this happens exactly when the state
φ is pure [55].

Proposition 52. Let A be a C∗-algebra. Then,

1. A state φ on A is pure if and only if the associated GNS representation
(Hφ, πγ) is irreducible.

2. Given a pure state φ on A there is a canonical bijection between rays in
the associated Hilbert Hφ and the equivalence class of φ,

Cφ = {ψ pure state on A | πψ equivalent to πφ} .
The bijection of point 2. of the previous preposition is explicitly given by
associating with any ξ ∈ Hφ , ||ξ|| = 1, the state on A given by

ψ(a) = (ξ, πφ(a)ξ) , ∀ a ∈ A , (A.11)
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which is seen to be pure. As was previously noted, the representation (Hφ, πφ)
is irreducible and each vector of Hφ is cyclic. This, in turn, implies that the
representation associated with the state ψ is equivalent to (Hφ, πφ).

As a simple example, we consider the algebra M2(C) with the two pure
states constructed in Sect. 2.3,

φ1(
[
a11 a12
a21 a22

]
) = a11 , φ2(

[
a11 a12
a21 a22

]
) = a22 . (A.12)

As we mentioned before, the corresponding representations are equivalent.
We shall show that they are both equivalent to the defining two dimensional
one.
The ideals of elements of ‘vanishing norm’ of the states φ1, φ2 are, respec-
tively,

N1 =
{[

0 a12
0 a22

]}
, N2 =

{[
a11 0
a21 0

]}
. (A.13)

The associated Hilbert spaces are then found to be

H1 =
{[
x1 0
x2 0

]}
' C2 =

{
X =

(
x1
x2

)}
,

〈X,X ′〉 = x∗1x
′
1 + x∗2x

′
2 .

H2 =
{[

0 y1
0 y2

]}
' C2 =

{
X =

(
y1
y2

)}
,

〈Y, Y ′〉 = y∗1y
′
1 + y∗2y

′
2 . (A.14)

As for the action of any element A ∈M2(C) on H1 and H2, we get

π1(A)
[
x1 0
x2 0

]
=
[
a11x1 + a12x2 0
a21x1 + a22x2 0

]
≡ A

(
x1
x2

)
,

π2(A)
[

0 y1
0 y2

]
=
[

0 a11y1 + a12y2
0 a21y1 + a22y2

]
≡ A

(
y1
y2

)
. (A.15)

The two cyclic vectors are given by

ξ1 =
(

1
0

)
, ξ2 =

(
0
1

)
. (A.16)

The equivalence of the two representations is provided by the off-diagonal
matrix

U =
[

0 1
1 0

]
, (A.17)

which interchanges 1 and 2 , Uξ1 = ξ2. Indeed, by using the fact that for an
irreducible representation any non vanishing vector is cyclic, from (A.15) we
see that the two representations can indeed be identified.
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A.3 Hilbert Modules

The theory of Hilbert modules is a generalization of the theory of Hilbert
spaces and it is the natural framework for the study of modules over a C∗-
algebra A endowed with a Hermitian A-valued inner product. Hilbert mod-
ules have been (and are) used in a variety of applications, notably for the
study of strong Morita equivalence. The subject started with the works [131]
and [126]. We refer to [153] for a very nice introduction while here we sim-
ply report on the fundamentals of the theory. Throughout this appendix, A
will be a C∗-algebra (almost always with unit) and its norm will be denoted
simply by || · ||.

Definition 26. A right pre-Hilbert module over A is a right A-module E
endowed with an A-valued Hermitian structure, namely a sesquilinear form
〈 , 〉A : E × E → A, which is conjugate linear in the first variable and such
that

〈η1, η2a〉A = 〈η1, η2〉A a , (A.18)
〈η1, η2〉∗A = 〈η2, η1〉A , (A.19)
〈η, η〉A ≥ 0 , 〈η, η〉A = 0 ⇔ η = 0 , (A.20)

for all η1, η2, η ∈ E, a ∈ A.
By the property (A.20) in the previous definition the element 〈η, η〉A is self-
adjoint. As in ordinary Hilbert spaces, the property (A.20) provides a gener-
alized Cauchy-Schwartz inequality

〈η, ξ〉∗A 〈η, ξ〉A ≤ || 〈η, η〉A || 〈ξ, ξ〉A , ∀ η, ξ ∈ E , (A.21)

which in turns, implies

|| 〈η, ξ〉A ||2 ≤ || 〈η, η〉A |||| 〈ξ, ξ〉A || , ∀ η, ξ ∈ E , (A.22)

By using these properties and the norm || · || in A one defines a norm in E .

Definition 27. The norm of any element η ∈ E is defined by

||η||A =:
√
|| 〈η, η〉 || . (A.23)

One can prove that || · ||A satisfies all the properties (2.5) of a norm.

Definition 28. A right Hilbert module over A is a right pre-Hilbert module
E which is complete with respect to the norm || · ||A.
By completion any right pre-Hilbert module will give a right Hilbert module.
It is clear that Hilbert modules over C are ordinary Hilbert spaces.
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A left (pre-)Hilbert module structure on a left A-module E is provided by
an A-valued Hermitian structure 〈 , 〉A on E which is conjugate linear in the
second variable and with condition (A.18) replaced by

〈aη1, η2〉A = a 〈η1, η2〉A , ∀ η1, η2,∈ E , a ∈ A . (A.24)

In what follows, unless otherwise stated, by a Hilbert module we shall
mean a right one. It is straightforward to pass to equivalent statements con-
cerning left modules.

Given any Hilbert module E over A, the closure of the linear span of
{〈η1, η2〉A , η1, η2 ∈ E} is an ideal in A. If this ideal is the whole of A the
module E is called a full Hilbert module.1

It is worth noticing that, contrary to what happens in an ordinary Hilbert
space, the Pythagoras equality is not valid in a generic Hilbert module E . If
η1 and η2 are any two orthogonal elements in A, i.e. 〈η1, η2〉A = 0, in general
one has that ||η1 + η2||2A 
= ||η1||2A + ||η2||2A. Indeed, properties of the norm
only guarantee that ||η1 + η2||2A ≤ ||η1||2A + ||η2||2A.

An ‘operator’ on a Hilbert module need not admit an adjoint.

Definition 29. Let E be a Hilbert module over the C∗-algebra A. A contin-
uous A-linear map T : E → E is said to be adjointable if there exists a map
T ∗ : E → E such that

〈T ∗η1, η2〉A = 〈η1, Tη2〉A , ∀ η1, η2 ∈ E . (A.25)

The map T ∗ is called the adjoint of T . We shall denote by EndA(E) the
collection of all continuous A-linear adjointable maps. Elements of EndA(E)
will also be called endomorphisms of E.
One can prove that if T ∈ EndA(E), then also its adjoint T ∗ ∈ EndA(E)
with (T ∗)∗ = T . If both T and S are in EndA(E), then TS ∈ EndA(E) with
(TS)∗ = S∗T ∗. Finally, the space EndA(E), endowed with this involution
and with the operator norm

||T || =: sup{||Tη||A | ||η||A ≤ 1} , (A.26)

becomes a C∗-algebra of bounded operators due to the inequality 〈Tη, Tη〉A ≤
||T ||2 〈η, η〉A. Indeed, EndA(A) is complete if E is.

There are also the analogues of compact endomorphisms which are ob-
tained as usual from ‘endomorphisms of finite rank’. For any η1, η2 ∈ E an
endomorphism |η1〉 〈η2| is defined by

|η1〉 〈η2| (ξ) =: η1 〈η2, ξ〉A , ∀ ξ ∈ E . (A.27)

1 Rieffel [131] calls it an A-rigged space.
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Its adjoint is just given by

(|η1〉 〈η2|)∗ = |η2〉 〈η1| , ∀ η1, η2 ∈ E . (A.28)

One can check that

|| |η1〉 〈η2| ||A ≤ ||η1||A||η2||A , ∀ ξ ∈ E . (A.29)

Furthermore, for any T ∈ EndA(E) and any η1, η2, ξ1, ξ2 ∈ E , one has the
expected composition rules

T ◦ |η1〉 〈η2| = |Tη1〉 〈η2| , (A.30)
|η1〉 〈η2| ◦ T = |η1〉 〈T ∗η2| , (A.31)
|η1〉 〈η2| ◦ |ξ1〉 〈ξ2| = |η1 〈η2, ξ1〉A〉 〈ξ2| = |η1〉 〈〈η2, ξ1〉A ξ2| . (A.32)

From these rules, we get that the linear span of the endomorphisms of the
form (A.27) is a self-adjoint two-sided ideal in EndA(E). The norm closure
in EndA(E) of this two-sided ideal is denoted by End0A(E); its elements are
called compact endomorphisms of E .

Example 19. The Hilbert module A.
The C∗-algebra A can be made into a (full) Hilbert Module by considering it
as a right module over itself together with the following Hermitian structure

〈 , 〉A : E × E → A , 〈a, b〉A =: a∗b , ∀ a, b ∈ A . (A.33)

The corresponding norm coincides with the norm of A since from the norm

property (2.8), ||a||A =
√|| 〈a, a〉A || =

√||a∗a|| =
√
||a||2 = ||a||. Thus,

A is complete also as a Hilbert module. Furthermore, as the algebra A is
unital, one finds that EndA(A) ' End0A(A) ' A, with the latter acting
as multiplicative operators on the left on itself. In particular, the isometric
isomorphism End0A(A) ' A is given by

End0A(A) �
∑
k

λk |ak〉 〈bk| �→
∑
k

λkakb
∗
k , ∀ λk ∈ C , ak, bk ∈ A .

(A.34)

Example 20. The Hilbert module AN .
Let AN = A×· · ·×A be the direct sum of N copies of A. It is promoted to a
full Hilbert module over A with module action and Hermitian product given
by

(a1, · · · , aN )a =: (a1a, · · · , aNa) , (A.35)

〈(a1, · · · , aN ), (b1, · · · , bN )〉A =:
n∑

k=1

a∗kbk , (A.36)
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for all a, ak, bk ∈ A. The corresponding norm is

||(a1, · · · , aN )||A =: ||
n∑

k=1

a∗kak|| . (A.37)

That AN is complete in this norm is a consequence of the completeness of
A with respect to its norm. Indeed, if (aα1 , · · · , aαN )α∈N is a Cauchy sequence
in AN , then, for each component, (aαk )α∈N is a Cauchy sequence in A. The
limit of (aα1 , · · · , aαN )α∈N in AN is just the collection of the limits from each
component.

Since A is taken to be unital, the unit vectors {ek} of CN form an or-
thonormal basis for AN and each element of AN can be written uniquely as
(a1, · · · , aN ) =

∑N
k=1 ekak giving an identification AN ' CN ⊗C A. As al-

ready mentioned, in spite of the orthogonality of the basis elements, one has
that ||(a1, · · · , aN )||A =: ||∑n

k=1 a
∗
kak|| 
=

∑n
k=1 ||a∗kak||. Parallel to the sit-

uation of the previous example, since the algebra A is unital, one finds that
EndA(AN ) ' End0A(AN ) ' Mn(A). Here Mn(A) is the algebra of n×n ma-
trices with entries in A; it acts on the left on AN . The isometric isomorphism
End0A(AN ) ' Mn(A) is now given by

End0A(A) � |(a1, · · · , aN )〉 〈(b1, · · · , bN )| �→



a1b

∗
1 · · · a1b∗N
...

...
aNb

∗
1 · · · aNb∗N


 ,

∀ ak, bk ∈ A , (A.38)

which is then extended by linearity.

Example 21. The sections of a Hermitian complex vector bundle.
Let A = C(M) be the commutative C∗-algebra of complex-valued continuous
functions on the locally compact Hausdorff space M . Here the norm is the
sup norm as in (2.9). Given a complex vector bundle E →M , the collection
Γ (E,M) of its continuous sections is a C(M)-module. This module is made
into a Hilbert module if the bundle carries a Hermitian structure, namely a
Hermitian scalar product 〈 , 〉Ep

: Ep × Ep → C on each fibre Ep, which
varies continuously over M (as the space M is compact, this is always the
case, any such structure is constructed by standard arguments with a partition
of unit). The C(M)-valued Hermitian structure on Γ (E,M) is then given by

〈η1, η2〉 (p) = 〈η1(p), η2(p)〉Ep
, ∀ η1, η2 ∈ Γ (E,M) , p ∈M . (A.39)

The module Γ (E,M) is complete for the associated norm. It is also full since
the linear span of {〈η1, η2〉 , η1, η2 ∈ Γ (E,M)} is dense in C(M). Further-
more, as the module is projective of finite type, it follows from Proposition 53
(see later) that
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EndC(M)(Γ (E,M)) ' End0C(M)(Γ (E,M)) = Γ (EndE,M) (A.40)

is the C∗-algebra of continuous sections of the endomorphism bundle EndE →
M of E.

If M is only locally compact, one has to consider the algebra C0(M) of
complex-valued continuous functions vanishing at infinity and the correspond-
ing module Γ0(E,M) of continuous sections vanishing at infinity which again
can be made into a full Hilbert module as before. But now one finds that
EndC(M)(Γ0(E,M)) = Γb(EndE,M), the algebra of bounded sections, while
End0C(M)(Γ0(E,M)) = Γ0(EndE,M), the algebra of sections vanishing at
infinity.

It is worth mentioning that not every Hilbert module over C(M) arises in
the manner described in the previous example. From the Serre-Swan theorem
described in Sect. 4.2, one obtains only (and all) the projective modules of
finite type. Now, there is a beautiful characterization of projective modules
E over a C∗-algebra A in terms of the compact operators End0(E) [132, 122],

Proposition 53. Let A be a unital C∗-algebra.

1. Let E be a Hilbert module over A such that IE ∈ End0(E) (so that
End(E) = End0(E)). Then, the underlying right A-module is projective
of finite type.

2. Let E be a projective module of finite type over A. Then, there exist A-
valued Hermitian structures on E for which E becomes a Hilbert module
and one has that IE ∈ End0(E). Furthermore, given any two A-valued
non degenerate Hermitian structures 〈 , 〉1 and 〈 , 〉2, on E, there exists
an invertible endomorphism T of E such that

〈η, ξ〉2 = 〈Tη, Tξ〉1 , ∀ η, ξ ∈ E . (A.41)

Proof. To prove point 1., observe that by hypothesis there are two finite
strings {ξk} and {ζk} of elements of E such that

IE =
∑
k

|ξk〉 〈ζk| . (A.42)

Then, for any η ∈ E , one has that

η = IEη =
∑
k

|ξk〉 〈ζk| η =
∑
k

ξk 〈ζk, η〉A , (A.43)

and hence E is finitely generated by the string {ξk}. If N is the length of the
strings {ξk} and {ζk}, one can embed E as a direct summand of AN , proving
that E is projective. The embedding and the surjection maps are defined,
respectively, by
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λ : E → AN , λ(η) = (〈ζ1, η〉A , · · · , 〈ζN , η〉A) ,

ρ : AN → E , ρ((a1, · · · , aN )) =
∑
k

ξkak . (A.44)

Then, for any η ∈ E , ρ◦λ(η) = ρ((〈ζ1, η〉A , · · · , 〈ζN , η〉A)) =
∑

k ξk 〈ζk, η〉A =∑
k |ξk〉 〈ζk| (η) = IE(η), so that ρ◦λ = IE as required. The projector p = λ◦ρ

identifies E as pAN .
To prove point 2., observe that, as the module E is a direct summand of

the free module AN for some N , the restriction of the Hermitian structure
(A.36) on the latter to the submodule E gives it a Hilbert module structure.
Furthermore, if ρ : AN → E is the surjection associated with E , the image
εk = ρ(ek), k = 1, . . . N , of the free basis {ek} of AN described in Example 20
is a (not free) basis of E . Then the identity IE can be written as

IE =
∑
k

|εk〉 〈εk| , (A.45)

and is an element of End0A(E).
Finally, from Sect. 4.3, given two Hermitian structures 〈 , 〉i , i = 1, 2 on E ,
there exist maps Qi : E → E ′ =: HomA(E ,A), defined by

Qi(ξ)(η) =: 〈ξ, η〉i , i = 1, 2 , ∀ ξ, η ∈ E . (A.46)

One has that Qi(ξa) = a∗Qi(ξ), for any a ∈ A (remember the right A-
module structure given to E ′ in (4.21)). The non degeneracy of the Hermitian
structures is equivalent to the invertibility of the two maps Qi. Furthermore,
since the Hermitian structures are both positive (from (A.20)), the invertible

endomorphism Q−1
1 ◦Q2 of E admits a square root2, T =

√
Q−1

1 ◦Q2. Then
for any ξ, η ∈ E , it follows that

〈Tξ, Tη〉1 = 〈TTξ, η〉1 = Q1(T 2ξ)(η)
= Q1(Q−1

1 ◦Q2ξ)(η) = Q2(ξ)(η)
= 〈ξ, η〉2 . (A.47)

2 In fact, one needs a technical requirement, namely that C∗-algebra A be stable
under holomorphic functional calculus. We recall that this means that for any a ∈
A and any function f which is holomorphic in a neighborhood of the spectrum
of a, one has that f(a) ∈ A.
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A.4 Strong Morita Equivalence

In this Appendix, we describe the notion of strong Morita equivalence
[131, 132] between two C∗-algebras. This really boils down to an equivalence
between the corresponding representation theories. We refer to Appendix A.3
for the fundamentals of Hilbert modules over a C∗-algebra.

Definition 30. Let A and B be two C∗-algebras. We say that they are
strongly Morita equivalent if there exists a B-A equivalence Hilbert bimodule
E, namely a module E which is at the same time a right Hilbert module over
A with A-valued Hermitian structure 〈 , 〉A, as well as being a left Hilbert
module over B with B-valued Hermitian structure 〈 , 〉B such that

1. The module E is full both as a right and as a left Hilbert module;
2. The Hermitian structures are compatible,

〈η, ξ〉B ζ = η 〈ξ, ζ〉A , ∀ η, ξ, ζ ∈ E ; (A.48)

3. The left representation of B on E is a continuous ∗-representation by
operators which are bounded for 〈 , 〉A, i.e. 〈bη, bη〉A ≤ ||b||2 〈η, η〉A.
The right representation of A on E is a continuous ∗-representation by
operators which are bounded for 〈 , 〉B, namely 〈ηa, ηa〉B ≤ ||a||2 〈η, η〉B.

Example 22. For any full Hilbert module E over the C∗-algebra A, the latter
is strongly Morita equivalent to the C∗-algebra End0A(E) of compact endo-
morphisms of E. If E is projective of finite type, so that by Proposition 53
End0A(E) = EndA(E), the algebra A is strongly Morita equivalent to the
whole of EndA(E).
Consider then a full right Hilbert module E on the algebra A with A-valued
Hermitian structure 〈 , 〉A. Now, E is a left module over the C∗-algebra
End0A(E). A left Hilbert module structure is constructed by inverting defi-
nition (A.27) so as to produce an End0A(E)-valued Hermitian structure on
E,

〈η1, η2〉End0
A(E) =: |η1〉 〈η2| , ∀ η1, η2 ∈ E . (A.49)

It is straightforward to check that the previous structure satisfies all the prop-
erties of a left structure including conjugate linearity in the second variable.
From the definition of compact endomorphisms, the module E is also full as a
module over End0A(E) so that requirement 1. in the Definition 30 is satisfied.
Furthermore, from definition A.27 one has that for any η1, η2, ξ ∈ E,

〈η1, η2〉End0
A(E) ξ =: |η1〉 〈η2| (ξ) = η1 〈η2, ξ〉A , (A.50)

so that also requirement 2. is met. Finally, the left action of End0A(E) on E as
an A-module is by bounded operators. And, finally, for any a ∈ A, η, ξ ∈ E,
one has that
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〈ηa, ηa〉End0

A(E) ξ, ξ
〉
A

= 〈(ηa) 〈ηa, ξ〉A , ξ〉A
= 〈ηaa∗ 〈η, ξ〉A , ξ〉A
= 〈η, ξ〉∗A aa∗ 〈η, ξ〉A
≤ ||a||2 〈η, ξ〉∗A 〈η, ξ〉A
≤ ||a||2 〈η 〈η, ξ〉A , ξ〉A
≤ ||a||2

〈
〈η, η〉End0

A(E) ξ, ξ
〉
A
, (A.51)

from which we find

〈ηa, ηa〉End0
A(E) ≤ ||a||2 〈η, η〉End0

A(E) , (A.52)

which is the last requirement of Definition 30.

Given any B-A equivalence Hilbert bimodule E one can exchange the rôle
of A and B by constructing the associated complex conjugate3 A-B equiva-
lence Hilbert bimodule Ẽ with a right action of B and a left action of A. As
an additive group Ẽ is identified with E and any element of it will be denoted
by η̃, with η ∈ E . Then one gives a conjugate action of A, B (and complex
numbers) with corresponding Hermitian structures. The left action by A and
the right action by B are defined by

a · η̃ =: η̃a∗ , ∀ a ∈ A , η̃ ∈ Ẽ , (A.53)

η̃ · b =: b̃∗η , ∀ b ∈ B , η̃ ∈ Ẽ , (A.54)

and are readily seen to satisfy the appropriate properties. As for the Hermi-
tian structures, they are given by

〈η̃1, η̃2〉A =: 〈η1, η2〉A , (A.55)
〈η̃1, η̃2〉B =: 〈η1, η2〉B , ∀ η̃1, η̃2 ∈ E . (A.56)

Again one readily checks that the appropriate properties, notably conjugate
linearity in the second and first variable respectively, are satisfied as well as
all the other requirements for an A-B equivalence Hilbert bimodule.

As already mentioned, two strongly Morita equivalent C∗-algebras have
equivalent representation theories. We sketch this fact in the what follows
while referring to [131, 132] for more details.

Suppose then that we are given two strongly Morita equivalent C∗-
algebras A and B with B-A equivalence bimodule E . Let (H, πA) be a rep-
resentation of A on the Hilbert space H. The algebra A acts with bounded
operators on the left on H via π. This action can be used to construct another
Hilbert space
3 Not to be confused with the dual module introduced in eq. (4.21).
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H′ =: E ⊗A H , ηa⊗A ψ − η ⊗A πA(a)ψ = 0 , ∀ a ∈ A, η ∈ E , ψ ∈ H ,
(A.57)

with scalar product

(η1 ⊗A ψ1, η2 ⊗A ψ2) =: (ψ1, 〈η1, η2〉A ψ2)H , ∀ η1, η2 ∈ E , ψ1, ψ2 ∈ H .
(A.58)

A representation (H′, πB) of the algebra B is constructed by

πB(b)(η ⊗A ψ) =: (bη)⊗A ψ , ∀ b ∈ B, η ⊗A ψ ∈ H′ . (A.59)

This representation is unitary equivalent to the representation (H, πA). If
one starts with a representation of B, by using the conjugate A-B equivalence
bimodule Ẽ one constructs an equivalent representation of A. Therefore, there
is an equivalence between the category of representations of the algebra A
and the category of representations of the algebra B

As a consequence, strong Morita equivalent C∗-algebras A and B have
the same space of classes of (unitary equivalent) irreducible representations.
Furthermore, there also exists an isomorphism between the lattice of two-
sided ideals ofA and B and a homeomorphism between the spaces of primitive
ideals of A and B.

In particular, if a C∗-algebra A is strongly Morita equivalent to some
commutative C∗-algebra, from the results of Sect. 2.2, the latter is unique
and is the C∗-algebra of continuous functions vanishing at infinity on the
space M of irreducible representations of A.
For any integer n, the algebra Mn(C) ⊗ C0(M) ' Mn(C0(M)) is strongly
Morita equivalent to the algebra C0(M). In particular, the algebras Mn(C)
and C are strongly Morita equivalent.

It is worth mentioning that if A and B are two separable C∗-algebras and
K is the C∗-algebra of compact operators on an infinite dimensional separable
Hilbert space, then one proves [23] that the algebras A and B are strongly
Morita equivalent if and only if A⊗K is isomorphic to B ⊗ K.

In [129], B-A equivalence Hilbert bimodules have been used to derive a
very nice formulation of spinor fields.

A.5 Partially Ordered Sets

Here we gather together some facts about partially ordered set. These are
mainly taken from [142].

Definition 31. A partially ordered set (or poset for short) P is a set endowed
with a binary relation % which satisfies the following axioms:

P1 x % x , for all x ∈ P ; (reflexivity)
P2 x % y and y % x ⇒ x = y; (antisymmetry)
P3 x % y and y % z ⇒ x % z. (transitivity)
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The relation % is called a partial order and the set P will be said to be
partially ordered. The relation x % y is also read ‘x precedes y’. The obvious
notation x ≺ y will mean x % y and x 
= y; x 4 y will mean y % x and
x 3 y will mean y ≺ x. Two elements x and y of P are said to be comparable
if x % y or y % x; otherwise they are incomparable (or not comparable). A
subset Q of P is called a subposet of P if it is endowed with the induced
order, namely for any x, y ∈ Q one has x %Q y in Q if and only if x %P y in
P .

An element x ∈ P is called maximal if there is no other y ∈ P such that
x ≺ y. An element x ∈ P is called minimal if there is no other y ∈ P such
that y ≺ x. Notice that P may admit more that one maximal and/or minimal
point. One says that P admits a 0̂ if there exists an element 0̂ ∈ P such that
0̂ % x for all x ∈ P . Similarly, P admits a 1̂ if there exists an element 1̂ ∈ P
such that x % 1̂ for all x ∈ P .

Example 23. Any collection of sets can be partially ordered by inclusion.
In particular, throughout the paper we have considered the collection of all
primitive ideals of a C∗-algebra at length.
Example 24. As mentioned in the previous Appendix, the set of all possible
topologies on the same space S is a partially ordered set. If τ1 and τ2 are two
topologies on the space S, one puts τ1 % τ2 if and only if τ1 is coarser than
τ2. The corresponding poset has a 0̂, the coarsest topology, in which only ∅
and S are open, and a 1̂, the finest topology, in which all subsets of S are
open.

Two posets P and Q are isomorphic if there exists an order preserving
bijection φ : P → Q, that is x % y in P if and only if φ(x) % φ(y) in Q, whose
inverse is also order preserving.

For any relation x % y in P , we get a (closed) interval defined by [x, y] =
{z ∈ P | x % z % y}. The poset P is called locally finite if every interval of
P is finite (it consists of a finite number of elements).

If x and y are in P , we say that y covers x if x ≺ y and no element z ∈ P
satisfies x ≺ z ≺ y. A locally finite poset is completely determined by its
cover relations.

The Hasse diagram of a (finite) poset P is a graph whose vertices are
the elements of P drawn in such a way that if x ≺ y then y is ‘above’ x;
furthermore, the links are the cover relations, namely, if y covers x then a
link is drawn between x and y. One does not draw links which would be
implied by transitivity. In Chap. 3 a few Hasse diagrams were given.

A chain is a poset in which any two elements are comparable. A subset
C of a poset P is called a chain (of P ) if C is a chain when regarded as a
subposet of P . The length Q(C) of a finite chain is defined as Q(C) = |C| − 1,
with |C| the number of elements in C. The length (or rank) of a finite poset
P is defined as Q(P ) =: max {Q(C) | is a chain of P}. If every maximal chain
of P has the same length n, one says that P is graded of rank n. In this case



A.5 Partially Ordered Sets 187

there is a unique rank function ρ : P → {0, 1, . . . , n} such that ρ(x) = 0 if x
is a minimal element and ρ(y) = ρ(x) + 1, if y covers x. The point x ∈ P is
said to be of rank i if ρ(x) = i.

If P and Q are posets, their cartesian product is the poset P ×Q on the
set {(x, y) | x ∈ P, y ∈ Q} such that (x, y) % (x′, y′) in P × Q if x % x′ in
P and y % y′ in Q. To draw the Hasse diagram of P × Q, one draws the
diagram of P , replaces each element x of P by a copy Qx of Q and connects
corresponding elements of Qx and Qy (by identifying Qx ' Qy) if x and y
are connected in the diagram of P .

Finally we mention that the dual of a poset P is the poset P ∗ on the same
set as P , but such that x % y in P ∗ if and only if y % x in P . If P and P ∗

are isomorphic, then P is called self-dual.
If x and y belong to a poset P , an upper bound of x and y is an element

z ∈ P for which x % z and y % z. A least upper bound of x and y is an upper
bound z of x and y such that any other upper bound w of x and y satisfies
z % w. If a least upper bound of x and y exists, then it is unique and it is
denoted x \/ y, ‘x join y’. Dually one can define the greatest lower bound x
/\ y, ‘x meet y’, when it exists. A lattice is a poset L for which every pair of
elements has a join and a meet. In a lattice the operations \/ and /\ satisfy
the following properties

1. they are associative, commutative and idempotent
(x \/ x = x /\ x = x);

2. x /\ (x \/ y) = x = x \/ (x /\ y) (absorbation laws);
3. x /\ y = x ⇔ x \/ y ⇔ x % y.

All finite lattices have the element 0̂ and the element 1̂.
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A.6 Pseudodifferential Operators

We shall give a very sketchy overview of some aspects of the theory of pseudo
differential operators while referring to [111, 146] for details.

Suppose we are given a rank k vector bundle E →M with M a compact
manifold of dimension n. We shall denote by Γ (E) the C∞(M)-module of
corresponding smooth sections.
A differential operator of rank m is a linear operator

P : Γ (M) −→ Γ (M) , (A.60)

which, in local coordinates x = (x1, · · · , xn) of M , is written as

P =
∑

|α|≤m

Aα(x)(−i)|α| ∂
|α|

∂xα
,

∂|α|

∂xα
=
∂α1

∂xα1
1
◦ · · · ◦ ∂

αn

∂xαn
1
. (A.61)

Here α = (α1, · · · , αn), 0 ≤ αj ≤ n, is a multi-index of cardinality |α| =∑n
j=1 αj . Each Aα is a k × k matrix of smooth functions on M and Aα 
= 0

for some α with |α| = m.
Consider now an element ξ of the cotangent space T ∗

xM , ξ =
∑

j ξjdxj .
The complete symbol of P is defined by the following polynomial function in
the components ξj .

pP (x, ξ) =
m∑
j=0

pPm−j(x, ξ) , pPm−j(x, ξ) =
∑

|α|=(m−j)

Aα(x)ξα , (A.62)

and the leading term is called the principal symbol

σP (x, ξ) = pPm(x, ξ) =
∑

|α|=m

Aα(x)ξα , (A.63)

here ξα = ξα1
1 · · · ξαn

n . Hence, for each cotangent vector ξ ∈ T ∗
xM , the princi-

pal symbol gives a map
σP (ξ) : Ex −→ Ex , (A.64)

where Ex is the fibre of E over x. If τ : T ∗M → M is the cotangent bundle
of M and τ∗E the pullback of the bundle E to T ∗M , then, the principal
symbol σP determines in an invariant manner a (fibre preserving) bundle
homomorphism of τ∗E, namely an element of Γ (τ∗EndE → T ∗M).

The differential operator P is called elliptic if its principal symbol σP (ξ) :
Ex → Ex is invertible for any non zero cotangent vector ξ ∈ T ∗M . If M
is a Riemannian manifold with metric g = (gµν), since σP (ξ) is polynomial
in ξ, being elliptic is equivalent to the fact that the linear transformation
σP (ξ) : Ex → Ex is invertible on the cosphere bundle

S∗M = {(x, ξ) ∈ T ∗M | gµνξµξν = 1} . (A.65)
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Example 25. The Laplace-Beltrami operator ∆ : C∞(M) → C∞(M) of a
Riemannian metric g = (gµν) on M , in local coordinates is written as

∆f = −
∑
µν

gµν
∂2f

∂xµ∂xν
+ lower order terms . (A.66)

As for its principal symbol we have,

σ∆(ξ) =
∑
µν

gµνξµξν = ||ξ||2 , (A.67)

which is clearly invertible for any non zero cotangent vector ξ. Therefore, the
Laplace-Beltrami operator is an elliptic second order differential operator.

Example 26. Suppose now that M is a Riemannian spin manifold as in
Sect. 6.5. The corresponding Dirac operator can be written locally as,

D = γ(dxµ)∂µ + lower order terms , (A.68)

were γ is the algebra morphism defined in (6.48). Then, its principal symbol
is just the ‘Clifford multiplication’ by ξ,

σD(ξ) = γ(ξ) . (A.69)

By using (6.49) one has γ(ξ)2 = −||ξ||2Id, and the symbol is certainly in-
vertible for ξ 
= 0. Therefore, the Dirac operator is an elliptic first order
differential operator.

By using its symbol, the action of the operator P on a local section u of
the bundle E can be written as a Fourier integral,

(Pu)(x) =
1

(2π)n/2

∫
ei〈ξ,x〉p(x, ξ)û(ξ)dξ ,

û(ξ) =
1

(2π)n/2

∫
e−i〈ξ,x〉u(x)dx , (A.70)

with 〈ξ, x〉 =
∑n

j=1 ξjxj .
One uses the formula (A.70) to define pseudodifferential operators, taking
p(x, ξ) to belong to a more general class of symbols. The problem is to control
the growth of powers in k. We shall suppose, for simplicity, that we have a
trivial vector bundle over Rn of rank k.

With m ∈ R, one defines the symbol class Symm to consist of matrix-
valued smooth functions p(x, ξ) on Rn ×Rn, with the property that, for any
x-compact K ⊂ Rn and any multi-indices α, β, there exists a constant CKαβ

such that
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|Dβ
xD

α
ξ p(x, ξ)| ≤ CKαβ(1 + |ξ|)m−|α|, (A.71)

with Dβ
x = (−i)|β|∂|β|/∂xβ and Dα

ξ = (−i)|α|∂|α|/∂ξα. Furthermore, the
function p(x, ξ) has an ‘asymptotic expansion’ given by

p(x, ξ) ∼
∞∑
j=0

pm−j(x, ξ) . (A.72)

where pm−j are matrices of smooth functions on Rn×Rn, homogeneous in ξ
of degree (m− j),

pm−j(x, λξ) = λm−jpm−j(x, ξ) , |ξ| ≥ 1, λ ≥ 1 . (A.73)

The asymptotic condition (A.72) means that for any integer N , the difference

p(x, ξ)−
N∑
j=0

pm−j(x, ξ) = FN (x, ξ) (A.74)

satisfies a regularity condition similar to (A.71): for any x-compact K ∈ Rn

and any multi-indices α, β there exists a constant CKαβ such that

|Dβ
xD

α
ξ F

N (x, ξ)| ≤ CKαβ(1 + |ξ|)m−(N+1)−|α| . (A.75)

Thus, FN ∈ Symm−N−1 for any integer N .
As we said before, any symbol p(x, ξ) ∈ Symm defines a pseudodifferential
operator P of order m by formula (A.70) where now u is a section of the
rank k trivial bundle over Rn and can therefore be identified with a Ck-
valued smooth function on Rn. The space of all such operators is denoted by
ΨDOm. Let P ∈ ΨDOm with symbol p ∈ Symm. Then, the principal symbol
of P is the residue class σP = [p] ∈ Symm/Symm−1. One can prove that
the principal symbol transforms under diffeomorphisms as a matrix-valued
function on the cotangent bundle of Rn.

The class Sym−∞ is defined by
⋂

m Sym
m and the corresponding oper-

ators are called smoothing operators, the space of all such operators being
denoted by ΨDO−∞. A smoothing operator S has an integral representa-
tion with a smooth kernel which means that its action on a section u can be
written as

(Pu)(x) =
∫
K(x, y)u(y)dy , (A.76)

where K(x, y) is a smooth function on Rn × Rn (with compact support).
One is really interested in equivalence classes of pseudodifferential operators,
where two operators P and P ′ are declared equivalent if P−P ′ is a smoothing
operator.

Given P ∈ ΨDOm andQ ∈ ΨDOµ with symbols p(x, ξ) and q(x, ξ) respec-
tively, the composition R = P ◦ Q ∈ ΨDOm+µ has symbol with asymptotic
expansion
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r(x, ξ) ∼
∑
α

i|α|

α!
Dα

ξ p(x, ξ)D
α
x q(x, ξ) . (A.77)

In particular, the leading term |α| = 0 in the previous expression shows
that the principal symbol of the composition is the product of the principal
symbols of the factors

σR(x, ξ) = σP (x, ξ)σQ(x, ξ) . (A.78)

Given P ∈ ΨDOm, its formal adjoint P ∗ is defined by

(Pu, v)L2 = (u, P ∗)L2 , (A.79)

for all sections u, v with compact support. Then, P ∗ ∈ ΨDOm and, if P
has symbol p(x, ξ), the operator P ∗ has symbol p∗(x, ξ) with asymptotic
expansion

p∗(x, ξ) ∼
∑
α

i|α|

α!
Dα

ξD
α
x (p(x, ξ))∗ , (A.80)

with the operation ∗ on the right-hand side denoting Hermitian matrix con-
jugation (p(x, ξ))∗ = p(x, ξ) t, t being matrix transposition. Again, by taking
the leading term |α| = 0, we see that the principal symbol σP

∗
of P ∗ is just the

Hermitian conjugate (σP )∗ of the principal symbol of P . As a consequence,
the principal symbol of a positive pseudodifferential operator R = P ∗P is
nonnegative.

An operator P ∈ ΨDOm with symbol p(x, ξ) is said to be elliptic if
its principal symbol σP ∈ Symm/Symm−1 has a representative which, as
a matrix-valued function on T ∗Rn is pointwise invertible outside the zero
section ξ = 0 in T ∗Rn. An elliptic (pseudo-)differential operator P ∈ ΨDOm

admits an inverse modulo smoothing operators. This means that there exists
a pseudodifferential operator Q ∈ ΨDO−m such that

PQ− I = S1 ,

QP − I = S2 , (A.81)

with S1 and S2 smoothing operators. The operator Q is called a paramatrix
for P .

The general situation of pseudodifferential operators acting on sections
of a nontrivial vector bundle E → M , with M compact, is worked out with
suitable partitions of unity. An operator P acting on Γ (E → M) is a pseu-
dodifferential operator of order m, if and only if the operator u �→ φP (ψu)
is a pseudodifferential operator of order m for any φ, ψ ∈ C∞(M) which are
supported in trivializing charts for E. The operator P is then recovered from
its components via a partition of unity. Although the symbol of the opera-
tor P will depend on the charts, just as for ordinary differential operators,
its principal symbol σP has an invariant meaning as a mapping from T ∗M
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into endomorphisms of E → M . Thus, ellipticity has an invariant meaning
and an operator P is called elliptic if its principal symbol σP is pointwise
invertible off the zero section of T ∗M . Again, if M is a Riemannian manifold
with metric g = (gµν), since σP (ξ) is homogeneous in ξ, being elliptic means
that the linear transformation σP (ξ) : Ex → Ex is invertible on the cosphere
bundle S∗M ⊂ T ∗M .

Example 27. Consider the one dimensional Hamiltonian given, in ‘momen-
tum space’ by

H(ξ, x) = ξ2 + V (x) , (A.82)

with V (x) ∈ C∞(R). It is clearly a differential operator of order 2. The follow-
ing are associated pseudodifferential operators of order −2, 1,−1 respectively
[54],

(ξ2 + V )−1 = ξ−2 − V ξ−4 + 2V (1)ξ−5 + ... ,

(ξ2 + V )1/2 = ξ +
V

2
ξ−1 − V

(1)

4
ξ−2 + ... ,

(ξ2 + V )−1/2 = ξ−1 − V
2
ξ−3 +

3V (1)

4
ξ−4 + ... , (A.83)

where V (k) is the k-th derivative of V with respect to its argument.
In particular, for the one dimensional harmonic oscillator V (x) = x2. The
pseudodifferential operators in (A.83) become,

(ξ2 + x2)−1 = ξ−2 − x2ξ−4 + 4xξ−5 + ... ,

(ξ2 + x2)1/2 = ξ +
x2

2
ξ−1 − x

2
ξ−2 + ... .

(ξ2 + x2)−1/2 = ξ−1 − x
2

2
ξ−3 +

3x
2
ξ−4 + ... . (A.84)
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spectral, Séminaire Bourbaki, 48ème année, 1995-96, n. 816, Juin 1996.

[40] A. Connes, A short Survey of Noncommutative Geometry, J. Math.
Phys. 41 (2000) 3832-3866.

[41] A. Connes, Noncommutative Geometry Year 2000, math.QA/0011193.
[42] A. Connes, C∗-algebras and Differential Geometry, translation of [30],

hep-th/0101093.
[43] A. Connes, M. Douglas, A. Schwarz, Noncommutative Geometry and

Matrix Theory: Compactification on Tori, J. High Energy Physics 02
(1998) 3.

[44] A. Connes, M. Dubois-Violette, Noncommutative Finite-dimensional
Manifolds. I. Spherical Manifolds and Related Examples,
math.QA/0107070.

[45] A. Connes, D. Kreimer, Hopf algebras, Renormalization and Noncom-
mutative Geometry, Commun. Math. Phys. 199 (1998) 201-242;
Lessons from Quantum Field Theory - Hopf Algebras and Spacetime
Geometries, Lett. Math. Phys. 48 (1999) 85-96;
Renormalization in Quantum Field Theory and the Riemann-Hilbert
Problem, J. High Energy Physics 09 (1999) 24;
Renormalization in Quantum Field Theory and the Riemann-Hilbert



196 References

Problem I: the Hopf Algebra Structure of Graphs and the Main Theo-
rem, Commun. Math. Phys. 210 (2000) 249-273;
Renormalization in Quantum Field Theory and the Riemann-Hilbert
Problem II: the β-function, Diffeomorphisms and the Renormalization
Group, Commun. Math. Phys. 216 (2001) 215-241;
Insertion and Elimination: the doubly infinite Lie algebra of Feynman
graphs, hep-th/0201157.

[46] A. Connes, G. Landi, Noncommutative Manifolds, the Instanton Alge-
bra and Isospectral Deformations, Commun. Math. Phys. 221 (2001)
141-159.

[47] A. Connes, J. Lott, Particle models and noncommutative geometry,
Nucl. Phys. B (Proc. Suppl.) B18 (1990) 29-47.
A. Connes, J. Lott, The Metric Aspect on Noncommutative Geometry,
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[118] C.P. Mart́ın, J.M. Gracia-Bond́ıa, J.C. Várilly, The Standard Model as

a Noncommutative Geometry: the Low Energy Regime, Phys. Rept. 294
(1998) 363-406.
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AF algebra, 36
algebra, 7
– differential, of universal forms, 105,
107

– AF, 36
– automorphism, 141
– – inner, 141
– – outer, 141
– Banach ∗−, 8
– Banach, 8
– enveloping, 61
– homomorphism, 10
– Jordan, 20
– normed, 8
– of sets, 45
– opposite, 61
– ∗−, 7
automorphism of an algebra, 141
– inner, 141
– – as gauge transformation, 142, 144
– outer, 141
– – as diffeomorphism, 141, 145

Bianchi identity, 126
bimodule, 60
– center of a, 132
– central, 67
– diagonal, 67
– Hilbert, 183
– Hilbert space as a, 101
– induced by a module structure, 67
– of universal 1-forms, 105
– of universal p-forms, 107
– over a commutative algebra, 67
– ∗−, 68
bounded operator, 9
braiding map, 131
Bratteli diagram, 39

– of a poset, 54
– of an AF algebra, 39–40, 55
bundle
– of C∗-algebras, 58
– of Hilbert spaces, 58

canonical spectral triple (over a
manifold), 95, 153, 161

Cartan structure equations, 158
character, 11
characteristic values, 84
C∞ element (in an algebra), 94
closure operation, 171
compact endomorphism (of a Hilbert

module), 178
compact operators, 18–19, 83, 185
– as infinitesimals, 57
connection, 133
– compatible with a braiding, 131
– compatible with a Hermitian
structure, 129

– dual, 128
– Grassmann, 127
– Levi-Civita, 95
– linear, 158
– – Levi-Civita, 158
– – metric, 158
– – torsion of a, 158
– on a bimodule, 131–132
– on a projective module, 127
– on the algebra of endomorphisms of
a module, 126

– universal, 125
connection 1-forms (of a linear

connection), 159
connection on a circle lattice, 167
cover
– open (of a topological space), 172
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C∗-algebra, 8, 10
– AF, 36
– associated with a noncommutative
lattice, 55

– associated with a point of a
noncommutative lattice, 55

– commutative AF, 41
– liminal, 19
– morphism, 10
– postliminal, 19
– – with a finite dual, 35
– primitive, 11, 44
– representation, 10
– scale of a, 81
– separable, 13, 35
– simple, 9
– suspension of a, 77
curvature
– of a connection, 126, 133
– Riemannian, 158
cyclic vector, 101, 175

detector, 21, 56
diffeomorphisms
– and outer automorphisms, 141, 145
differential
– exterior, Connes’, 111
– exterior, universal, 107
differential algebra of universal forms,

105, 107
Dirac operator, 96
Dirac operator on a circle lattice, 167
direct limit, see inductive limit
direct system, see inductive system
distance
– geodesic, 97, 98, 151
– on the state space, 99
Dixmier trace, 86, 119
– as a Wodzicki residue, 91
– and gravity, 152

Einstein-Hilbert action, 146, 152, 155,
160

endomorphism
– of a module, 66, 178
– – unitary, 67
exterior
– differential, Connes’, 111
– differential, universal, 107

fermionic action, 147, 148
Fibonacci numbers, 76
field strength (gauge), 123
finitary approximation, 23, 25
finite rank operator, 18
forms
– inner product on, 119
– junk, 111, 123
– noncommutative Connes’, 111
– on a manifold, 113
– universal, 105
function
– vanishing at infinity, 8, 172
– with compact support, 8, 172

gauge potential, 128, 133, 143
gauge transformations, 124, 130, 134
– and inner automorphisms, 142, 144
Gel’fand
– space, 11
– topology, 11
– transform, 12
Gel’fand-Naimark theorem
– commutative, 11–13
geodesic distance, 97, 98, 151
GNS construction, 14, 174–176
Grothendieck group, 70

Harmonic oscillator, 192
– and Dixmier trace, 89
– and Wodzicki residue, 90
– pseudodifferential operators associ-
ated with the, 192

Hasse diagram, 25, 186
heat kernel expansion, 119, 144, 154
Hermitian structure, 65
– connection compatible with a, 129
Hilbert module, 177
– full, 178
Hilbert space
– associated with a noncommutative
lattice, 55

– associated with a point of a
noncommutative lattice, 55

hull kernel topology, see Jacobson
topology

ideal, 9
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– essential, 9
– maximal, 9, 12
– modular, 12
– primitive, 11, 43
– – of an AF algebra, 43
– regular, 12
– ∗−, 9
idempotent, 13
induced gravity, 153
inductive limit
– of algebras, 36, 56
– of Hilbert spaces, 56
inductive system
– of algebras, 36, 56
– of group, 73
– of Hilbert spaces, 56
– of semigroup, 73
infinitesimal, 84
– of order one, 85
inner product
– on forms, 119
inverse limit, see projective limit
inverse system, see projective system
isometry, 69
– partial, 69

Jacobson topology, 12, 15
– and partial order, 36
Jordan algebra, 20

K-theory of inductive systems, 73
K0(A), 70
– for an AF algebra, 71
K0+(A), 71
Kn(A), 80
K-cycle, see spectral triple
Kuratowski axioms, 15, 171

Laplacian (covariant) on a circle lattice,
168

Lichnérowicz formula, 96, 153
liminal C∗-algebra, 19
limit point, 171
Line bundle on a circle lattice, 167
Lipschitz element (in an algebra), 94

maximal chain (in a noncommutative
lattice), 55

measurable operator, 92

module, 60
– basis of a, 61
– dimension of a, 61
– dual (over a ∗-algebra), 65, 129
– dual (over an algebra), 60
– finite projective, 63
– free, 61
– generating family for a, 61
– Hermitian, 65, 177, 180
– Hilbert, 177
– of finite type, 61
– projective, 62
– – and connections, 127
Morita equivalence, 47, 55, 183, 185
morphism
– C∗-algebras, 10
– of modules, 60

noncommutative lattice, 35
– quantum mechanics on a, 165–169
norm, 8
– Lipschitz, 97
– on a Hilbert module, 177
– operator, 9
– supremum, 8

operator
– differential, 188
– – elliptic, 188
– pseudodifferential, 189
– – elliptic, 191
– smoothing, 190
ordered group, 71

paramatrix, 191
partial embedding, 39
partial order, 24
– and topology, 24, 25
partially ordered set, see poset
Penrose tiling
– algebra of the, 73
poset, 23, 24, 185
– as noncommutative lattice, 35
– as structure space, 35
– locally finite, 186
– of all topology on a space, 173, 186
positive cone (in an ordered group), 71
positive element, 10
postliminal C∗-algebra, 19
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PrimA, 14
– bundle of C∗-algebras over, 58
– bundle of Hilbert spaces over, 58
– of a commutative AF algebra, 41
– of an AF algebra, 43
– operator valued functions on, 57
primitive spectrum, see PrimA
projective limit, 31, 33
projective module of finite type, see

finite projective (module)
projective system, 30
projector, 13, 66
– addition, 70
– equivalence, 69
– formal difference, 70
proper map, 13

real element (of an algebra), 20
real spectral triple, 101
real structure
– canonical, 102
– for a spectral triple, 101
regional topology, 17
representation, 10
– equivalence of, 11
– faithful, 10
– GNS, 174
– irreducible, 10
resolvent, 9, 93
resolvent set, 9

scaled ordered group, 81
Seeley-de Witt coefficients, 154
self-adjoint element (of an algebra), 10,

20
separating vector, 101
spectral action
– bosonic, 144
– fermionic, 149
– for gravity, 153
spectral radius, 10
spectral triple, 93
– canonical (over a manifold), 95, 153,
161

– dimension of a, 99
– distance associated with a, 99
– equivalent, 103
– even, 93
– integral associated with a, 99

– odd, 93
– product, 102
– real, 101
spectrum, 9
– joint, 12
Standard Model
– bosonic part, 139
– fermionic part, 149
state, 174
– pure, 14, 174
structure equations, 159
structure space, 12, 14
– of a commutative algebra, 11, 97
symbol
– complete, 188, 189
– principal, 188, 190
symbol map, 114

theorem
– Connes’ trace, 91
– Serre-Swan, 63
θ-quantization on a circle lattice, 165
topological action, 135
topological space
– compact, 172
– connected, 13
– Hausdorff, 11, 172
– locally compact, 172
– metrizable, 13
– second-countable, 41
– T0, 16, 172
– T1, 17, 172
– T2, 172
– totally disconnected, 41, 173
topology
– and partial order, 24, 25
– finitary, 23
– Hausdorff, 172
– norm, 8
– regional, 17
– T0, 172
– T1, 172
– T2, 172
– uniform, 8
– via detectors, 22
– weak, 101

unitary endomorphism
– of a module, 67
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unitary group
– of a module, 67
– of an algebra, 67, 123

vector potential (gauge), 123

Weyl formula, 100

Wodzicki residue, 89
– and gravity, 152
– and heat kernel expansion, 152
– as a Dixmier trace, 91

Yang-Mills action, 124, 135
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